Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Rodrigues, Guilherme Souza | - |
Autor(es): dc.contributor | Ladeira, Marcelo | - |
Autor(es): dc.creator | Azevedo, Diego Marques de | - |
Data de aceite: dc.date.accessioned | 2024-10-23T14:58:34Z | - |
Data de disponibilização: dc.date.available | 2024-10-23T14:58:34Z | - |
Data de envio: dc.date.issued | 2024-02-21 | - |
Data de envio: dc.date.issued | 2024-02-21 | - |
Data de envio: dc.date.issued | 2024-02-21 | - |
Data de envio: dc.date.issued | 2023-03-03 | - |
Fonte completa do material: dc.identifier | http://repositorio2.unb.br/jspui/handle/10482/47828 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/871204 | - |
Descrição: dc.description | Dissertação (mestrado) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2023. | - |
Descrição: dc.description | Com o uso de tecnologias baseadas em redes neurais artificiais, os sistemas de Reconhecimento Automático de Fala (do inglês, Automatic Speech Recognition – ASR) para o Português Brasileiro (PB) têm apresentado importantes avanços nos últimos anos. Muitos dos trabalhos que alcançaram resultados no estado da arte utilizaram modelos de pontaa-ponta de código aberto, como o Wav2vec 2.0 e o Whisper. Dentre outras alternativas, estão as ferramentas comerciais, também avaliadas em nosso trabalho. Foram incluídas no estudo as APIs do Google e da Microsoft para a transcrição da fala em texto e também o sistema da VoiceInteraction, chamado Audimus. Nós analisamos o desempenho relativo dessas ferramentas – utilizando como métrica o Word Error Rate (WER) – sobre a transcrição de áudios gravados de rádios e canais de TV. Um modelo linear generalizado (do inglês, Generalized Linear Model – GLM) foi criado para descrever de forma estocástica, para cada método em questão, o relacionamento entre as propriedades dos áudios utilizados no experimento (exemplo, formato do arquivo e duração do áudio) e a acurácia da transcrição. Dentre outros usos, essa estratégia permite a análise local da performance de cada método, sendo possível estimar o desempenho esperado para cada áudio. Assim, é possível identificar não apenas a ferramenta com melhor performance global, mas também diagnosticar em quais tipos de áudio cada método teria o melhor desempenho. Essa abordagem possibilita a construção de sistemas ASR otimizados a partir do uso composto de diversos transcritores. Os dados gerados e o código utilizado para construção do modelo estocástico neste experimento estão publicamente disponíveis. | - |
Descrição: dc.description | With the use of neural network-based technologies, Automatic Speech Recognition (ASR) systems for Brazilian Portuguese (BP) have shown great progress in the last few years. Several state-of-art results were achieved by open-source end-to-end models, such as the Kaldi toolkit, the Wav2vec 2.0 and the Whisper. Alternative commercial tools are also available, including the Google and Microsoft speech to text APIs and the Audimus System of VoiceInteraction. We analyse the relative performance of such tools – in terms of the so-called Word Error Rate (WER) – when transcribing audio recordings from Brazilian radio and TV channels. A generalized linear model (GLM) is designed to stochastically describe the relationship between some of the audio’s properties (e.g. file format and audio duration) and the resulting WER, for each method under consideration. Among other uses, such strategy enables the analysis of local performances, indicating not only which tool shows the best overall performance, but when exactly it is expected to do so. This, in turn, could be used to design an optimized system composed of several transcribers. The data generated for conducting this experiment and the scripts used to produce the stochastic model are publicly available. | - |
Descrição: dc.description | Instituto de Ciências Exatas (IE) | - |
Descrição: dc.description | Departamento de Ciência da Computação (IE CIC) | - |
Descrição: dc.description | Programa de Pós-Graduação em Computação Aplicada, Mestrado Profissional | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Acesso Aberto | - |
Direitos: dc.rights | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.unb.br, www.ibict.br, www.ndltd.org sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra supracitada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. | - |
Palavras-chave: dc.subject | Reconhecimento automático da voz | - |
Palavras-chave: dc.subject | Redes neurais (Computação) | - |
Palavras-chave: dc.subject | Reconhecimento automático da voz - sistemas | - |
Palavras-chave: dc.subject | Transcrição | - |
Palavras-chave: dc.subject | Modelos lineares generalizados | - |
Palavras-chave: dc.subject | Software proprietário | - |
Título: dc.title | Uma análise probabilística do desempenho de sistemas ASR para rádios e tvs brasileiras | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional – UNB |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: