CO2 and CO capture on the ZnO surface : a GCMC and electronic structure study

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorGordijo, Júlia Silva-
Autor(es): dc.creatorRodrigues, Nailton Martins-
Autor(es): dc.creatorMartins, João Batista Lopes-
Data de aceite: dc.date.accessioned2024-07-22T12:16:20Z-
Data de disponibilização: dc.date.available2024-07-22T12:16:20Z-
Data de envio: dc.date.issued2024-02-06-
Data de envio: dc.date.issued2024-02-06-
Data de envio: dc.date.issued2023-11-29-
Fonte completa do material: dc.identifierhttp://repositorio2.unb.br/jspui/handle/10482/47702-
Fonte completa do material: dc.identifierhttps://doi.org/10.1021/acsomega.3c06378-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/800019-
Descrição: dc.descriptionThe amount of polluting gases released into the atmosphere has grown drastically. Among them, it is possible to cite the release of CO2 and CO gases on a large scale as one of the products of the complete and incomplete combustion of petroleum derived fuels. It is worth noting that the production of energy by burning fossil fuels supplies the energy demand but causes environmental damage, and several studies have addressed the reduction. One of them is using materials with the potential to capture these gases. The experimental and theoretical studies have significant contributions that promote advances in this area. Among the materials investigated, ZnO has emerged, demonstrating the considerable potential for capturing various gases, including CO2 and CO. This work used density functional theory (DFT) and Grand Canonical Monte Carlo Method (GCMC) to investigate the adsorption of CO2 and CO on the surface of Zinc oxide (ZnO) to obtain adsorption isotherms and interaction energy and the interaction nature. The results suggest that CO2 adsorption slightly changed the angle of the O−C−O to values less than 180°. For the CO, its carbon atom interacts simultaneously with Zn and O of the ZnO surface. However, CO interactions have an ionic character with a lower binding energy value than the CO2 interaction. The energies calculated using the PM6 and DFT methods generated results compatible with the experimental values. In applications involving a mixture of these two gases, the adsorption of CO2 should be favored, and there may be inhibition of the adsorption of CO for high CO2 concentrations.-
Descrição: dc.descriptionInstituto de Química (IQ)-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherAmerican Chemical Society-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsThis article is licensed under CC-BY-NC-ND 4.0-
Palavras-chave: dc.subjectAdsorção-
Palavras-chave: dc.subjectCompostos de carbono inorgânicos-
Palavras-chave: dc.subjectÓxidos-
Título: dc.titleCO2 and CO capture on the ZnO surface : a GCMC and electronic structure study-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.