Equações de Langevin para modelos de deposição e corrosão

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorReis, Fabio David Alves Aarão-
Autor(es): dc.contributorCPF:85723860763-
Autor(es): dc.contributorhttp://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4782597Z8-
Autor(es): dc.creatorSilveira, Flávio A. da-
Data de aceite: dc.date.accessioned2024-07-11T18:44:42Z-
Data de disponibilização: dc.date.available2024-07-11T18:44:42Z-
Data de envio: dc.date.issued2021-03-10-
Data de envio: dc.date.issued2013-01-09-
Data de envio: dc.date.issued2021-03-10-
Data de envio: dc.date.issued2012-01-01-
Fonte completa do material: dc.identifierhttps://app.uff.br/riuff/handle/1/19768-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/776665-
Descrição: dc.descriptionIn this work, we studied thin-film growth through lattice-gas models. Discrete models, in which particles interact through simple rules, are capable of generating non-trivial behaviour at large scales of lenght and time and may, by an apropriate choice of these rules, describe properties of the surface of materials. As recently as 20 years ago, a microscopic theory which takes into account the markov character of the interaction rules, has made possible, through a master equation formulation, to associate analytical equations to the processes defined by discrete models. According to this theory, a perturbative expansion of the master equation associated to the rules of the model connects it to a Langevin-type equation, generically called growth equation. The applicaton of this theory specifically to discrete models for the growth of thin-films is analyzed in detail, and subjects such as the choice of the expansion parameter and the nature of the stability of the solutions are addressed. Among the many properties we can obtain through both numerical realizations of discrete models and growth equations, there exist some scaling exponents which charaterize the modeled surface dynamics. We analized four discrete models in which the surface evolves by the deposition of particles and, for all of them, we have made measurements of these exponents through numerical simulations. These exponents may be compared to results from the continuous theory for these models, but, in order to take into account the singular character of certain approximations involved in the limiting process, we developed a scaling theory. This theory allows us to determine the universality class of the studied models by both analytical and numerical methods. We extended this analysis to a model of dissolution of solids with the solidon- solid (SOS) restriction, which disallows the formation of holes and pores on the surface. We then have deepened our study on models for corrosion, by forsaking the SOS restriction, the purpose of which was to bring understanding on how height fluctuations evolve in a model where the surface develops on a grain structure. We observe, in this non-SOS metal dissolution model, how the detachment of clusters formed by more than on particle from the electrode can approximate deviations from the Faraday law by the mecanism known as chunk effect.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior-
Descrição: dc.descriptionNeste trabalho, estudamos o crescimento de filmes finos através de modelos do tipo gás de rede. Modelos discretos, em que partículas interagem através de regras simples, são capazes de gerar comportamento não trivial nas grandes escalas de comprimento e tempo, e podem, através da escolha apropriada destas regras, descrever propriedades da superfície dos materiais. Recentemente, uma teoria microscópica que leva em consideração apenas o caráter markoviano das regras de interação tornou possível associar equações analíticas aos processos definidos pelos modelos discretos. De acordo com esta teoria, uma expansão perturbativa da equação mestra associada às regras do modelo o conecta a uma equação do tipo Langevin, chamada genericamente equação de crescimento. A aplicação desta teoria especificamente a modelos discretos para o crescimento de filmes finos é analisada aqui em detalhe, e questões como a escolha do parâmetro de expansão e a natureza da estabilidade das soluções são abordadas. Dentre as muitas propriedades que podemos obter a partir de realizações numéricas dos modelos discretos e das equações de crescimento, existem alguns expoentes de escala que caracterizam a dinâmica da superfície modelada. Analisamos quatro modelos discretos em que a superfície evolui pela deposição de partículas e, para todos eles, fizemos medidas destes expoentes através de simulações numéricas. Estes expoentes podem ser comparados com resultados obtidos da teoria contínua para estes modelos, mas, para ter em conta o caráter singular de certas aproximações realizadas na regularização das funções discretas envolvidas no processo, desenvolvemos uma teoria de escala. Esta permite determinar a classe de universalidade dos modelos estudados por ambos métodos analíticos e numéricos. Estendemos esta análise a um modelo de dissoluções de sólidos com vínculo sólido-sobre-sólido (SOS), que restringe a formação de buracos e poros na superfície. Em seguida, aprofundamos nosso estudo em modelos de corrosão, abandonando a restrição SOS com o propósito de compreender como as flutuações de altura se desenvolvem em um modelo em que a superfície evolui sobre uma estrutura com grãos. Em particular, observamos como, neste modelo não-SOS para a dissolução de metais, o descolamento de agregados formados por mais de uma partícula aproxima os desvios da lei de Faraday pelo mecanismo conhecido por chunk effect.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherPrograma de Pós-graduação em Física-
Publicador: dc.publisherFísica-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsCC-BY-SA-
Palavras-chave: dc.subjectEquação de Langevin-
Palavras-chave: dc.subjectCorrosão-
Palavras-chave: dc.subjectModelo-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA-
Título: dc.titleEquações de Langevin para modelos de deposição e corrosão-
Tipo de arquivo: dc.typeTese-
Aparece nas coleções:Repositório Institucional da Universidade Federal Fluminense - RiUFF

Não existem arquivos associados a este item.