Orbitally-induced paleoceanographic changes in subtropical South Atlantic for the global climate over the last 800,000 years

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorAlbuquerque, Ana Luiza Spadano-
Autor(es): dc.contributorhttp://lattes.cnpq.br/4016720596063058-
Autor(es): dc.contributorRiveiros, Natalia Vázquez-
Autor(es): dc.contributorJorry, Stephan-
Autor(es): dc.contributorTurq, Bruno Jean-
Autor(es): dc.contributorOliveira, Igor Martins Venancio Padilha de-
Autor(es): dc.contributorhttp://lattes.cnpq.br/8375137961138590-
Autor(es): dc.contributorStríkis, Nicolas Misailidis-
Autor(es): dc.contributorhttp://lattes.cnpq.br/3472432536871948-
Autor(es): dc.contributorMarum, Stefan Mulitza-
Autor(es): dc.contributorhttp://lattes.cnpq.br/7271073203474409-
Autor(es): dc.creatorBallalai, João Marcelo-
Data de aceite: dc.date.accessioned2024-07-11T18:08:31Z-
Data de disponibilização: dc.date.available2024-07-11T18:08:31Z-
Data de envio: dc.date.issued2023-10-25-
Data de envio: dc.date.issued2023-10-25-
Fonte completa do material: dc.identifierhttp://app.uff.br/riuff/handle/1/30978-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/764371-
Descrição: dc.descriptionAnthropogenic greenhouse gas emissions significantly altered the Earth's climate system, particularly in recent decades. This increased atmospheric CO2 and global warming have been associated with the slowdown in the Atlantic Meridional Overturning Circulation (AMOC). The AMOC regulates climate by distributing heat and carbon throughout the Atlantic, maintaining the inter-hemispheric energy balance with the Intertropical Convergence Zone (ITCZ) and global atmospheric patterns. The wind-driven South Atlantic Subtropical Gyre (SASG), part of the upper limb of the AMOC, transports heat from the subtropics to the North Atlantic. Long-term climate changes are driven by cyclic oscillations in Earth's orbit, resulting in latitudinal and seasonal variations in incoming insolation. To fully comprehend the natural behavior and limitations of the AMOC, it is crucial to examine its dynamics on an orbital scale, considering surface and deep-water perspectives across different climates during the Late Pleistocene. This thesis focuses on the controls that orbital forcing exercises on paleoceanographic processes in the subtropical South Atlantic over the last 800 ka and their implications for global climate. By analyzing oxygen ( 18O) and carbon ( 13C) stable isotopes from benthic and planktic foraminiferal species from sediment cores GL-854 (25°12′S, 42°37′W) and MD08-3167 (23°18.91′S, 12°22.61′E), as well as Mg/Ca ratio of planktic species from core MD08-3167, this thesis aims to uncover the intricate relationship between AMOC modes and the set of different climates. The proposed framework provides a comprehensive understanding of deep-water and ocean-atmospheric processes, as well as of controlling mechanisms of the Benguela Upwelling System (BUS), on the orbital scale and their impacts on the global climate. Chapters 1, 2, and 3 are dedicated to the thesis's introduction, objectives, methods, and results. Chapter 4 investigates the deep-water circulation dynamic in the South Atlantic over the last 770 ka, based on the benthic foraminifera δ 13C record from core GL-854. This record is compared to published 13C data from the eastern South Atlantic to examine the zonal 13C gradient variability (∆13Cw-e) of North Atlantic Deep Water (NADW). It is proposed that AMOC oscillated between four modes controlled by orbitally-triggered variations in Antarctic sea ice extent. The orbital forcing is then propagated toward subtropical regions through controls over the deep-water formation. The proposed framework connects sea-ice and ocean-atmosphere dynamics to deep-water geometry within the South Atlantic basin, contributing to modulating the climate during the Late Pleistocene. Chapter 5 focuses on understanding the long-term variability of the BUS over the last 365 ka, based on the reconstruction of upper ocean stratification using the  18O gradient between planktic foraminifera species Globigerina bulloides and G. inflata (∆ 18O). Precessionally-paced stratification decrease is associated with the intensification and offshore expansion of the upwelling cell during austral summer insolation maxima. It is proposed that intensified deep-water formation in the North Atlantic during positive precession promotes intensified inter-hemispheric heat transfer, resulting in a northward shift of the SASG and enhanced the upwelling at BUS. A robust link is established between the upwelling intensification, the AMOC intensity, global atmospheric patterns, and a decrease in atmospheric CO2 during positive precession. Chapter 6 presents the protocol for performing Mg/Ca measurements in foraminifera samples using an ICP-MS performed at IFREMER. The protocol was applied to Globorotalia inflata specimens from core MD08-3167 to reconstruct thermocline temperature at the BUS over the last 365 ka. External reproducibility attests to accurate and precise results, allowing the continuous robust reconstruction of the Mg/Cabased thermocline temperatures. This record contributes to a better understanding of past oceanographic and climatic variability in the BUS and its implications for the carbon cycle. By combining surface and deep-water perspectives, studying ocean-atmospheric dynamics and the carbon cycle, we have gained insight into feedback mechanisms associated with AMOC variability, with important implications for atmospheric CO2.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq-
Descrição: dc.descriptionFundação Euclides da Cunha-
Descrição: dc.descriptionAs emissões antropogênicas de gases de efeito estufa mudaram significativamente o sistema climático da Terra, particularmente nas últimas décadas. Como resultado, o aumento do CO2atmosférico e o aquecimento global tem sido associado a desaceleração da Circulação Meridional do Atlântico (do inglês, Atlantic Meridional Overtuning Circulation - AMOC). A AMOC desempenha um papel crítico na regulação do clima, distribuindo calor e carbono em todo o Atlântico, mantendo o balanço energético inter-hemisférico em conjunto com a zona de convergência intertropical (do inglês, Intertropical Convergence Zone - ITCZ) e padrões atmosféricos globais. O giro subtropical do Atlântico Sul (do inglês, South Atlantic Subtropical Gyre - SASG), controlado pelo vento, faz parte do membro superior da AMOC, responsável pelo transporte de calor dos subtrópicos para o Atlântico Norte. As mudanças de longo prazo nesses componentes climáticos são influenciados por oscilações cíclicas na órbita da Terra, que causam variações na radiação solar em diferentes latitudes e estações. Para compreender totalmente o comportamento natural e os limites da AMOC, é crucial examinar sua dinâmica em uma escala orbital, considerando sua componente de superfície e de águas profundas em diferentes climas durante o Pleistoceno tardio. Esta tese analisa os efeitos da força orbital nos processos paleoceanográficos no Atlântico Sul subtropical nos últimos 800 ka e suas implicações as mudanças climáticas globais no presente e futuro. Utilizando isótopos estáveis de oxigênio ( 18O) e carbono ( 13C) em foraminíferos bentônicos e planctônicos nos testemunhos sedimentares GL-854 (25°12′S, 42°37′W) e MD08-3167 (23°18.91′S, 12°22.61′E), bem como a análise de Mg/Ca de espécies planctônicas do testemunho MD08-3167, o objetivo desta tese é compreender a complexa relação entre os modos da AMOC e os diferentes climas. A estrutura proposta busca fornecer uma compreensão abrangente da dinâmica de águas profundas e das interações oceano-atmosféra, assim como os mecanismos que controlam o sistema de ressurgência da Benguela (do inglês, Benguela Upwelling System - BUS) em escala orbital e seus impactos no clima global. Os capítulos 1, 2, e 3 são dedicados a introdução, objetivos, métodos e resultados da tese. O capítulo 4 investiga a dinâmica de circulação de águas profundas no Atlântico Sul nos últimos 770 ka, com base no registro de δ 13C de foraminífero bentônico Cibicides wuellerstorfi do testemunho GL-854. Este registro é comparado a dados publicados de δ 13C do leste do Atlântico Sul, a fim de examinar a variabilidade do gradiente zonal de δ 13C (∆ 13Cw-e) da Água Profundas do Atlântico Norte (do inglês, North Atlantic Deep Water - NADW). Propomos que a AMOC tenha oscilado entre quatro modos controlados por variações de gelo marinho na Antártica induzidos pelas forçantes orbitais. O efeito do orbital é então propagado para as regiões subtropicais através de controles sobre a formação de águas profundas no Atlântico. A discussão busca estabelecer conexões entre a dinâmica do gelo marinho, da interface oceanoatmosfera e a geometria das águas profundas na bacia do Atlântico Sul, contribuindo para a compreensão da modulação climática durante o Pleistoceno tardio. O capítulo 5 tem como objetivo compreender a variabilidade de longo prazo do BUS nos últimos 365 ka, com base na reconstrução da estratificação de superfície (∆ 18O) utilizando o gradiente de 18O entre as espécies G. Bulloides e G. inflata. Durante os períodos de máxima insolação de verão austral a estratificação é reduzida, associada à intensificação e expansão offshore da célula de ressurgência. O aumento na formação de águas profundas no Atlântico Norte durante a precessão positiva fortalece a transferência de calor entre os hemisférios, causando o deslocamento do SASG para o norte e um aumento na ressurgência no BUS. É estabelecida uma conexão entre a intensificação da ressurgência, a intensidade da AMOC, padrões atmosféricos globais e uma diminuição no CO2 atmosférico durante a precessão positiva. O capítulo 6 apresenta o protocolo para analisar as concentrações de Mg/Ca em foraminíferos usando um ICP-MS realizado no IFREMER. Este protocolo foi aplicado à espécie G. inflatado testemunho MD08-3167 para reconstruir as temperaturas da termoclina nos últimos 365 ka, o qual demonstrou uma reprodutibilidade externa consistente, o que garante resultados precisos e permite uma reconstrução contínua e confiável das temperaturas com base no Mg/Ca. Esse registro contribui para uma melhor compreensão da variabilidade oceanográfica e climática do passado do BUS e suas implicações para o ciclo do carbono. Ao combinar perspectivas superficiais e de águas profundas, estudando dinâmica oceano-atmosféra e o ciclo do carbono, obtivemos informações sobre mecanismos de feedback associados a variabilidades da AMOC, com implicações importantes para o CO2 atmosférico.-
Descrição: dc.description216 p.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsOpen Access-
Direitos: dc.rightsCC-BY-SA-
Palavras-chave: dc.subjectAtlantic Meridional Overturning Circulation-
Palavras-chave: dc.subjectOrbital cycles-
Palavras-chave: dc.subjectSouth Atlantic Subtropical Gyre-
Palavras-chave: dc.subjectInter-hemispheric heat transfer-
Palavras-chave: dc.subjectSouth Atlantic controls on climate, Mg/Ca analysis-
Palavras-chave: dc.subjectPaleoclimatologia-
Palavras-chave: dc.subjectPaleoceanografia-
Palavras-chave: dc.subjectForaminíferos planctônicos e bentônicos-
Palavras-chave: dc.subjectIsótopos estáveis-
Palavras-chave: dc.subjectCirculação de Revolvimento Meridional do Atlântico-
Palavras-chave: dc.subjectCiclos orbitais-
Palavras-chave: dc.subjectGiro subtropical do Atlântico Sul-
Palavras-chave: dc.subjectTransferência de calor inter-hemisférica; controles do Atlântico Sul no clima, análise de Mg/Ca-
Título: dc.titleOrbitally-induced paleoceanographic changes in subtropical South Atlantic for the global climate over the last 800,000 years-
Tipo de arquivo: dc.typeTese-
Aparece nas coleções:Repositório Institucional da Universidade Federal Fluminense - RiUFF

Não existem arquivos associados a este item.