
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Calsamiglia Mendlewicz, Gabriel | - |
| Autor(es): dc.contributor | Ribón Herguedas, Javier | - |
| Autor(es): dc.creator | Zamora Inuma, Francisco Miguel | - |
| Data de aceite: dc.date.accessioned | 2024-07-11T18:07:57Z | - |
| Data de disponibilização: dc.date.available | 2024-07-11T18:07:57Z | - |
| Data de envio: dc.date.issued | 2019-03-19 | - |
| Data de envio: dc.date.issued | 2019-03-19 | - |
| Data de envio: dc.date.issued | 2015 | - |
| Fonte completa do material: dc.identifier | https://app.uff.br/riuff/handle/1/8848 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/764156 | - |
| Descrição: dc.description | O mapa de Baum-Bott associa a cada folheação os índices de Baum-Bott das suas singularidades. Mais precisamente, denotemos por Fol(d,2) o conjunto das folheações de grau d≥ 2 em P2, e por Folnd(d,2) o subconjunto de Fol(d,2) formado pelas folheações que só tem singularidades não degeneradas. Dada F∈Folnd(d,2) com N(d) singularidades e conjunto singular Sing(F) ={p1....,PN(d)}. A associação F → (BB(F,p1),...,BB(F,pN(d))). não está bem definida pois se reordenamos os elementos de Sing(F) a folheação F teria duas imagens assim, a associação não pode ser um mapa. Para poder definir um mapa, vamos simetrizar as coordenadas obtendo assim o mapa BBd :Folnd(d,2) −→ C N(d) SN(d) G −→ [BB(G,p1),...,BB(G,pN(d))] onde Sing(G) ={p1,...,pN(d)}. Podemos estender BBd a um mapa racional com o qual podemos definir o mapa BBd :Fol(d,2) (P1)N(d) SN(d) ∼=P N(d) Que será chamado de mapa global de Baum-Bott ou simplesmente, mapa de Baum-Bott. Denotemos por Aut(P2) ao grupo de automorfismos holomorfos de P2. Consideremos a ação natural Ψ sobre Fol(d,2) dada por (T,F)∈ Aut(P2)×Fol(d,2) Ψ −→ T∗(F)∈ Fol(d,2). O objetivo principal deste trabalho é dar a prova de: 1. O posto do mapa de Baum-Bott na folheção de Jouanolou de grau d,Jd é: d2+7d−6 2 . 2. Para d = 2, a fibra genérica do mapa de Baum-Bott restrita a Folnd(d,2), cont´em exatamente 240 órbitas da ação de Aut(P2) | - |
| Descrição: dc.description | 79 f. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Direitos: dc.rights | openAccess | - |
| Direitos: dc.rights | CC-BY-SA | - |
| Palavras-chave: dc.subject | Folheação (Matemática) | - |
| Palavras-chave: dc.subject | Mapa de Baum-Bolt | - |
| Título: dc.title | Sobre a fibra do mapa de Baum-Bott em folheações de Grau dois em P2 | - |
| Tipo de arquivo: dc.type | Dissertação | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal Fluminense - RiUFF | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: