On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorSalomão, Rodrigo-
Autor(es): dc.contributorRodrigues, João Hélder Olmedo-
Autor(es): dc.creatorSantos, Reillon Oriel Carvalho-
Data de aceite: dc.date.accessioned2024-07-11T18:02:03Z-
Data de disponibilização: dc.date.available2024-07-11T18:02:03Z-
Data de envio: dc.date.issued2023-06-29-
Data de envio: dc.date.issued2023-06-29-
Fonte completa do material: dc.identifierhttp://app.uff.br/riuff/handle/1/29244-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/762226-
Descrição: dc.descriptionIn 1944 Zariski discovered that Bertini’s theorem on variable singular points is no longer true when we pass from a field of characteristic zero to a field of positive characteristic. In other words, he found fibrations by singular curves, which only exist in positive characteristic. Such fibrations are connected with many interesting phenomena. For instance, the extension of Enrique’s classification of surfaces to positive characteristic (Bombieri and Mumford in 1976), the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019). In this work we are going to show that the smoothing process introduced by Shimada in 1991 can be used to classify the set of fibrations by genus two singular curves, up to isomorphism among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces. Moreover we will also describe the vector fields that can be used to recover such fibrations by singular curves via quotient of rational elliptic surfaces.-
Descrição: dc.descriptionEm 1944 Zariski descobriu que o teorema de Bertini sobre pontos singulares variáveis não é mais verdadeiro quando passamos de um corpo de característica zero para um corpo de característica positiva. Em outras palavras, ele encontrou fibrações por curvas singulares, que só existem em característica positiva. Tais fibrações estão conectadas com muitos fenômenos interessantes. Por exemplo, a extensão da classificação de Enriques de superfícies para características positivas (Bombieri e Mumford em 1976), os contraexemplos do teorema do anulamento de Kodaira (Mukai em 2013 e Zheng em 2016) e as singularidades isoladas com número de Milnor infinito (Hefez, Rodrigues e Salomão em 2019). Neste trabalho vamos mostrar que o processo de suavização introduzido por Shimada em 1991 pode ser usado para classificar o conjunto de fibrações por curvas singulares de gênero dois - a menos de isomorfismos entre suas fibras genéricas - de modo que suas suavizações sejam fibrações elípticas em superfícies racionais. Além disso, também descreveremos os campos de vetores que podem ser usados para recuperar tais fibrações por curvas singulares via o quociente de superfícies elípticas racionais.-
Descrição: dc.description69 f.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsOpen Access-
Direitos: dc.rightsCC-BY-SA-
Título: dc.titleOn the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces-
Tipo de arquivo: dc.typeTese-
Aparece nas coleções:Repositório Institucional da Universidade Federal Fluminense - RiUFF

Não existem arquivos associados a este item.