Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Ré, Reginaldo | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/5545891505433768 | - |
Autor(es): dc.contributor | Ré, Reginaldo | - |
Autor(es): dc.contributor | Fabri, José Augusto | - |
Autor(es): dc.contributor | Garcia, Rogério Eduardo | - |
Autor(es): dc.creator | Satin, Ricardo Francisco de Pierre | - |
Data de aceite: dc.date.accessioned | 2022-02-21T22:23:36Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T22:23:36Z | - |
Data de envio: dc.date.issued | 2017-10-27 | - |
Data de envio: dc.date.issued | 2017-10-27 | - |
Data de envio: dc.date.issued | 2015-08-18 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/2552 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/674109 | - |
Descrição: dc.description | To predict defects in software projects is a complex task, especially for those projects that are in early stages of development by, often, providing few data for prediction models. The use of cross-project defect prediction is indicated in such a situation because it allows reuse data of similar projects. This work proposes an exploratory study on the use of different classification algorithms, of selection metrics, and grouping to build cross-project defect predictions models. This model was built using a performance measure, obtained by applying classification algorithms aim to find and group similar projects. Therefore, it was studied the application of 8 classification algorithms, 6 feature selection, and a cluster in a data set with 1283 projects, resulting in the construction of 61584 different prediction models. The classification algorithms and feature selection had their performance evaluated through different statistical tests showed that: the Naive Bayes was the best performance classifier, as compared with other 7 algorithms; the pair of feature selection algorithms that performed better was formed by CFS attribute evaluator and search method Genetic Search, compared with 6 other pairs. Considering the clustering algorithm, this proposal seems to be promising, since the results shows evidence that the predictions were best grouping using the predictions performed without any similarity clustering, and shows the decrease in training cost and testing during the prediction process. | - |
Descrição: dc.description | Predizer defeitos em projetos de software é uma tarefa complexa, especialmente para aqueles projetos que estão em fases iniciais do desenvolvimento por, frequentemente, disponibilizarem de poucos dados para que modelos de predição sejam criados. A utilização da predição cruzada de defeitos entre projetos é indicada em tal situação, pois permite reaproveitar dados de projetos similares. Este trabalho propõe um estudo exploratório sobre o uso de diferentes algoritmos de classificação, seleção de métricas, e de agrupamento na construção de um modelo de predição cruzada de defeitos entre projetos. Esse modelo foi construído com o uso de uma medida de desempenho, obtida com a aplicação de algoritmos de classificação, como forma de encontrar e agrupar projetos semelhantes. Para tanto, foi estudada a aplicação conjunta de 8 algoritmos de classificação, 6 de seleção de atributos, e um de agrupamento em um conjunto de dados com 1283 projetos, resultando na construção de 61584 diferentes modelos de predição. Os algoritmos de classificação e de seleção de atributos tiveram seus desempenhos avaliados por meio de diferentes testes estatísticos que mostraram que: o Naive Bayes foi o classificador de melhor desempenho, em comparação com os outros 7 algoritmos; o par de algoritmos de seleção de atributos que apresentou melhor desempenho foi o formado pelo avaliador de atributos CFS e método de busca Genetic Search, em comparação com outros 6 pares. Considerando o algoritmo de agrupamento, a presente proposta parece ser promissora, uma vez que os resultados obtidos mostram evidências de que as predições usando agrupamento foram melhores que as predições realizadas sem qualquer agrupamento por similaridade, além de mostrar a diminuição do custo de treino e teste durante o processo de predição. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Cornelio Procopio | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Programa de Pós-Graduação em Informática | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Teoria da previsão | - |
Palavras-chave: dc.subject | Software - Desenvolvimento | - |
Palavras-chave: dc.subject | Falhas de sistemas de computação | - |
Palavras-chave: dc.subject | Prediction theory | - |
Palavras-chave: dc.subject | Computer software - Development | - |
Palavras-chave: dc.subject | Computer system failures | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA | - |
Palavras-chave: dc.subject | Ciência da Computação | - |
Título: dc.title | Um estudo exploratório sobre o uso de diferentes algoritmos de classificação, de seleção de métricas, e de agrupamento na construção de modelos de predição cruzada de defeitos entre projetos | - |
Título: dc.title | An exploratory study on the use of different classification algorithms, of selection metrics, and grouping to build cross-project defect prediction models | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: