Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Siqueira, Hugo Valadares | - |
Autor(es): dc.contributor | Corrêa, Fernanda Cristina | - |
Autor(es): dc.contributor | Tadano, Yara de Souza | - |
Autor(es): dc.contributor | Siqueira, Hugo Valadares | - |
Autor(es): dc.creator | Curi, Fernando Calixto | - |
Autor(es): dc.creator | Castanho, Diego Solak | - |
Data de aceite: dc.date.accessioned | 2022-02-21T22:21:09Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T22:21:09Z | - |
Data de envio: dc.date.issued | 2021-09-22 | - |
Data de envio: dc.date.issued | 2021-09-22 | - |
Data de envio: dc.date.issued | 2021-05-06 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/26049 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/673236 | - |
Descrição: dc.description | The technological advances of the last decades have brought great opportunities for society. The rapid development of new technologies has allowed common users to acquire equipment with large computational processing capabilities. Increasingly, these resources are being used as a way to perform tasks previously seen as long and difficult to execute, by means of computer programs that automate functions previously performed manually. Based on these premises, this work developed a framework that enables the application of the multiple linear regression (MLR), very common in several branches of literature. It allows the optimization of free parameters using optimization metaheuristics, namely, particle swarm optimization, genetic algorithm and differential evolution. A user-friendly interface was developed and at the same time the software has all the necessary functions for customization of the algorithms and analysis of the results. The programming of the software was done in Python language, which has the necessary resources both for the programming of the algorithms and for the creation of the interface layout. As an example of application, a real database was used to estimate the number of hospitalizations for respiratory diseases in the city of São Paulo. At the end of the work, the effectiveness of the algorithms is evaluated and their performance is compared. | - |
Descrição: dc.description | Conselho Nacional do Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná | - |
Descrição: dc.description | Os avanços tecnológicos das últimas décadas trouxeram grandes oportunidades para a sociedade. O rápido desenvolvimento de novas tecnologias permitiu aos usuários comuns a aquisição de equipamentos com ampla capacidade de processamento computacional. Cada vez mais estes recursos são utilizados como uma maneira de realizar tarefas antes vistas como longas e de difícil execução, por meio de programas de computador que automatizam as funções antes realizadas manualmente. Com base em tais premissas, neste trabalho foi desenvolvido um framework que possibilita a aplicação do modelo linear da regressão múltipla (MLR), muito utilizado em diversos ramos da ciência. Tal framework permite o cálculo dos parâmetros livres utilizando metaheurísticas de otimização, a saber, otimização por enxame de partículas, algoritmo genético e evolução diferencial. No supracitado framework foi elaborada uma interface amigável ao usuário que ainda possui todas as funções necessárias para customização dos algoritmos e análise dos resultados. A programação do software foi feita em linguagem Python, que possui os recursos necessários tanto para a programação dos algoritmos quanto para a criação do layout da interface. Como exemplo de aplicação foi abordada uma base de dados real com vistas a estimar o número de internações por doenças respiratórias na cidade de São Paulo. Ao final do trabalho avalia-se a eficácia dos algoritmos e um comparativo sobre seu desempenho. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Ponta Grossa | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Departamento Acadêmico de Engenharia Eletrônica | - |
Publicador: dc.publisher | Engenharia Elétrica | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
Palavras-chave: dc.subject | Algorítmos | - |
Palavras-chave: dc.subject | Otimização combinatória | - |
Palavras-chave: dc.subject | Interfaces de usuário (Sistemas de computação) | - |
Palavras-chave: dc.subject | Aparelho respiratório - Doenças | - |
Palavras-chave: dc.subject | Algorithms | - |
Palavras-chave: dc.subject | Combinatorial optimization | - |
Palavras-chave: dc.subject | User interfaces (Computer systems) | - |
Palavras-chave: dc.subject | Respiratory organs - Diseases | - |
Palavras-chave: dc.subject | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | - |
Título: dc.title | Desenvolvimento de um framework para utilização da regressão linear múltipla com algoritmos de otimização e interface gráfica | - |
Título: dc.title | Development of a framework for using multiple linear regression with optimization algorithms and graphical interface | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: