Uma abordagem baseada em computação evolutiva aplicado na inferência de redes de regulação gênica

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorSanches, Danilo Sipoli-
Autor(es): dc.contributorSanches, Danilo Sipoli-
Autor(es): dc.contributorLopes, Fabrício Martins-
Autor(es): dc.contributorPaschoal, Alexandre Rossi-
Autor(es): dc.creatorKuroda, Marcelo Massashi-
Data de aceite: dc.date.accessioned2022-02-21T22:10:09Z-
Data de disponibilização: dc.date.available2022-02-21T22:10:09Z-
Data de envio: dc.date.issued2020-11-09-
Data de envio: dc.date.issued2020-11-09-
Data de envio: dc.date.issued2015-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/7420-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/669196-
Descrição: dc.descriptionA living organism can be seen as a network of molecules connected by biochemical reactions that has a complex system of sending and receiving signals that perform cellular control. Studies are being conducted to understand the mechanisms of control and the relationships of these reactions. They can be understood by observing the time course gene expression levels, which are estimated using methods of molecular information extraction. From these gene expression data it is possible to infer genetic regulatory networks. There are many methods to infer genetic regulatory networks in the literature, the method adopted in this work is the method of selection of features, composed of a search algorithm and a criterion function. The function criterion used is based on the average conditional entropy and the adopted is the genetic algorithm. Due to the large number of genes and the few experiments produced, the inference of genetic regulatory networks is an open challenge on bioinformatics. The discovery of relationships between the genes allows you to understand and analyze diseases, contributing to the production of more effective drugs against diseases and treatments. For inference of genetic regulatory networks have been developed two genetic algorithms, a chromosome representation for genes and the other with representation of chromosomes by networks. To validate the inferred networks used artificial gene networks. Genetic algorithm with representation of chromosomes by networks presented a greater similarity between the inferred networks and artificial gene networks, but the genetic algorithm with representation of chromosomes for genes obtained a much better computational time, thus the genetic algorithm representation of chromosome for genes has a better cost-benefit, since the difference in similarity between networks inferred by the two algorithms has been small.-
Descrição: dc.descriptionUm organismo vivo pode ser visto como uma rede de moléculas conectadas por reações bioquímicas que possui um complexo sistema de envio e recebimento de sinais que realizam o controle celular. Estudos vêm sendo realizados para entender os mecanismos de controle e os relacionamentos destas reações. Estes mecanismos podem ser entendidos observando a evolução temporal dos níveis de expressão gênica, que são estimados utilizando métodos de extração de informação molecular. A partir destes dados de expressão gênica é possível inferir redes de regulação gênica. Existem muitos métodos para inferir redes de regulação gênica na literatura, o método adotado neste trabalho é o método de seleção de características, composto por um algoritmo de busca e uma função critério. A função critério utilizada é baseada na entropia condicional media e o adotado é o algoritmo genético. Devido ao grande número de genes e os poucos experimentos produzidos, a inferência de redes de regulação gênica é um desafio em aberto na bioinformática. A descoberta dos relacionamentos entre os genes permite entender e analisar doenças, contribuindo na produção de medicamentos mais eficazes contra doenças e em tratamentos. Para a inferência de redes de regulação gênica foram desenvolvidos dois algoritmos genéticos, um com representação dos cromossomos por genes e o outro com representação dos cromossomos por redes. Para a validação das redes inferidas foi utilizado redes gênicas artificiais. O algoritmo genético com representação dos cromossomos por redes apresentou um maior similaridade entre as redes inferidas e as redes gênicas artificiais, porém o algoritmo genético com representação dos cromossomos por genes obteve um tempo computacional muito melhor, dessa forma o algoritmo genético com representação do cromossomo por genes possui um melhor custo-benefício, já que a diferença na similaridade entre as redes inferidas pelos dois algoritmos foi pequena.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCornelio Procopio-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherTecnologia em Análise e Desenvolvimento de Sistemas-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectInferência (Lógica)-
Palavras-chave: dc.subjectEntropia-
Palavras-chave: dc.subjectAlgorítmos genéticos-
Palavras-chave: dc.subjectBioinformática-
Palavras-chave: dc.subjectInference-
Palavras-chave: dc.subjectEntropy-
Palavras-chave: dc.subjectGenetic algorithms-
Palavras-chave: dc.subjectBioinformatics-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO-
Título: dc.titleUma abordagem baseada em computação evolutiva aplicado na inferência de redes de regulação gênica-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.