Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Maciel, Denise do Rocio | - |
Autor(es): dc.contributor | Aires, Simone Bello Kaminski | - |
Autor(es): dc.contributor | Maciel, Denise do Rocio | - |
Autor(es): dc.contributor | Aires, Simone Bello Kaminski | - |
Autor(es): dc.contributor | Ranthum, Geraldo | - |
Autor(es): dc.contributor | Ribeiro, Richard Duarte | - |
Autor(es): dc.creator | Niemies, Fagler Ribeiro | - |
Autor(es): dc.creator | Vaurof, João Marcos Ianuxauskas | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:59:52Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:59:52Z | - |
Data de envio: dc.date.issued | 2021-01-21 | - |
Data de envio: dc.date.issued | 2021-01-21 | - |
Data de envio: dc.date.issued | 2019-12-12 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/23945 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/665527 | - |
Descrição: dc.description | Brazil is the world’s third-largest maize producer, third only to China and to the United States, therefore, maize is one of the main crops of great impact in the country. One of the obstacles to the high productivity of maize are diseases, which if they are not identified and combated can be responsible for crop losses. About 60% of maize crop losses are estimated to be caused by the white spot. In order to assist the farmer decision, a methodology was developed to determine the degree of severity of white spot on maize leaf, using digital image processing techniques. The methodology used to perform the work consists of the following steps: image acquisition, preprocessing, segmentation, postprocessing, edge detection and disease area calculation. It was verified that using the developed methodology it was possible to quantify the severity of white spot disease in maize leaf. It is concluded that the obtained result was satisfactory, since in the current literature the classification with the diagrammatic scale has a margin of error of 15% and with the methodology the error index was equal to 2.5%. | - |
Descrição: dc.description | O Brasil é o terceiro maior produtor mundial de milho, perdendo apenas para China e Estados Unidos, sendo assim, é uma das principais culturas de grande impacto no país. Um dos obstáculos para a alta produtividade do milho são as doenças, que se não identificadas e combatidas podem ser responsáveis por perda de lavouras. Estima-se que cerca de 60% das perdas no cultivo do milho são causadas pela mancha branca. Propondo auxiliar o agricultor na tomada de decisão, nesse trabalho foi elaborada uma metodologia para determinação do grau da severidade da mancha branca na folha do milho, utilizando técnicas de processamento digital de imagens. A metodologia utilizada para a realização do trabalho é formada pelas seguintes etapas: aquisição das imagens, pré-processamento, segmentação, extração de características, reconhecimento e interpretação. Verificou-se que utilizando a metodologia desenvolvida foi possível quantificar a severidade de doença mancha branca na folha do milho. Conclui-se que o resultado obtido foi satisfatório, visto que em trabalhos referentes a classificação com a escala diagramática, utilizada atualmente, tem uma margem de erro de 15%, com a metodologia proposta aplicado na imagem base desse trabalho o índice de erro foi igual a 2.5%. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Ponta Grossa | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Departamento Acadêmico de Informática | - |
Publicador: dc.publisher | Tecnologia em Análise e Desenvolvimento de Sistemas | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Milho - Doenças e pragas | - |
Palavras-chave: dc.subject | Processamento de imagens - Técnicas digitais | - |
Palavras-chave: dc.subject | Diagnóstico por imagem | - |
Palavras-chave: dc.subject | Corn - Diseases and pests | - |
Palavras-chave: dc.subject | Image processing - Digital techniques | - |
Palavras-chave: dc.subject | Diagnostic imaging | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Título: dc.title | Determinação do grau de severidade da mancha branca no milho com a utilização da câmera de smartphone para captura de imagens em ambiente controlado | - |
Título: dc.title | Determination of white spot severity in maize using smartphone to capture image in controlled environment | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: