Avaliação da utilização de redes neurais para previsão do risco de inundação em áreas urbanas na cidade de Curitiba/PR

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorFreire, Flavio Bentes-
Autor(es): dc.contributorhttps://orcid.org/0000-0002-5459-5578-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5516837837393064-
Autor(es): dc.contributorAndrade, Fernando Oliveira de-
Autor(es): dc.contributorhttps://orcid.org/ 0000-0003-4348-7966-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5175699449525205-
Autor(es): dc.contributorFreire, Flavio Bentes-
Autor(es): dc.contributorhttps://orcid.org/0000-0002-5459-5578-
Autor(es): dc.contributorhttp://lattes.cnpq.br/5516837837393064-
Autor(es): dc.contributorConceição, Vinicius Masquetti da-
Autor(es): dc.contributorhttps://orcid.org/0000-0001-8714-3810-
Autor(es): dc.contributorhttp://lattes.cnpq.br/9614903174867724-
Autor(es): dc.creatorValle, Robson Felipe do-
Data de aceite: dc.date.accessioned2022-02-21T21:53:49Z-
Data de disponibilização: dc.date.available2022-02-21T21:53:49Z-
Data de envio: dc.date.issued2021-10-24-
Data de envio: dc.date.issued2021-10-24-
Data de envio: dc.date.issued2021-07-28-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/26216-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/663103-
Descrição: dc.descriptionSoil impermeabilization, the reduction of green areas, the absence of maintenance in sewers and the lack of palliative measures relating to high levels of precipitation have caused countless cases of floods. Therefore, It is of paramount importance to know the levels of precipitation in order to produce proper urban planning. The city of Curitiba-PR had 13 floods in March 2021, that is, the problem is still recurrent. Thus, a neural network method was applied from 2010 to 2020 in the city of Curitiba, Brazil with the intent of predicting the risk of floods by using precipitation data and numbers of flooded streets throughout the period. The neural network used was Feed Forward, in which the processing occurs from the input layer towards the output layer, without feedback. And to train the network, a standard Bayesian reverse propagation regularization algorithm was used, which minimizes the linear combinations. For the precipitation statistics it was used data from National Meteorological Institute (INMET) and for the flooded streets statistics it was used data from the Civil Defense of Curitiba. It was observed that by the use of seven neurons the coefficient of determination (R²) was significantly higher, producing the number of 0,9829 as the prevision of flooded streets. Twelve neural networks were tested to predict flooded streets in one year, with R² greater than 0.95 in all networks. Therefore, with the use of neural networks it was possible to predict the risk of floods in relation to the precipitation levels.-
Descrição: dc.descriptionA impermeabilização do solo, redução de áreas verdes, ausência de manutenção em redes de drenagem e medidas paliativas, relacionadas as altas precipitações, tem causado inúmeros casos de alagamentos. Portanto, a necessidade de conhecer os níveis de precipitação que podem gerar alagamentos é de suma importância para produzir planejamento urbano adequado. A cidade de Curitiba-PR, apresentou 13 alagamentos em março de 2021, ou seja, o problema ainda é recorrente. Ao observar os números de recorrências, utilizou a metodologia de redes neurais, aplicada no período de 2010 a 2020 da cidade de Curitiba-PR, com a intenção de prever os riscos de alagamentos, através das precipitações e dos números de ruas alagadas para os próximos períodos. A rede neural utilizada foi de Feed Forward, a qual o processamento ocorre da camada de entrada em direção a camada de saída, sem realimentação. E para treinar a rede, foi utilizado um algoritmo de regularização padrão Bayesiano de propagação reversa, que minimiza as combinações lineares. Para composição dos dados de precipitação foram utilizados dados do Instituto Nacional de Meteorologia (INMET) e para os números de ruas alagadas foram utilizados os chamados da Defesa Civil de Curitiba. Observou-se que a utilização de sete (7) neurônios, produz o coeficiente de determinação (R²) mais elevado, com 0,9829, para previsões de ruas alagadas. Foram testadas 12 redes neurais para prever ruas alagadas em um ano, com R² superior a 0,95 em todas as redes. Portanto, com a utilização das redes neurais é possível prever riscos de alagamentos em função dos níveis de precipitação.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCuritiba-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Engenharia Civil-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Direitos: dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/-
Palavras-chave: dc.subjectDrenagem-
Palavras-chave: dc.subjectPrecipitação (Meteorologia) - Previsão-
Palavras-chave: dc.subjectRedes neurais (Computação)-
Palavras-chave: dc.subjectAvaliação de riscos ambientais-
Palavras-chave: dc.subjectInundações - Previsão - Curitiba (PR)-
Palavras-chave: dc.subjectDrainage-
Palavras-chave: dc.subjectPrecipitation forecasting-
Palavras-chave: dc.subjectNeural networks (Computer science)-
Palavras-chave: dc.subjectEnvironmental risks assessment-
Palavras-chave: dc.subjectFloods - Forecasting - Curitiba (PR)-
Palavras-chave: dc.subjectCNPQ::ENGENHARIAS::ENGENHARIA CIVIL-
Palavras-chave: dc.subjectEngenharia Civil-
Título: dc.titleAvaliação da utilização de redes neurais para previsão do risco de inundação em áreas urbanas na cidade de Curitiba/PR-
Título: dc.titleEvaluation of the use of neural networks to predict flood risk in urban areas in the city of Curitiba / PR-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.