Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Gonçalves, Diego Bertolini | - |
Autor(es): dc.contributor | Kawamoto, André Luiz Satoshi | - |
Autor(es): dc.contributor | Alencar, Aretha Barbosa | - |
Autor(es): dc.contributor | Gonçalves, Diego Bertolini | - |
Autor(es): dc.creator | Abreu, Douglas Vinicius de | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:47:23Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:47:23Z | - |
Data de envio: dc.date.issued | 2020-11-08 | - |
Data de envio: dc.date.issued | 2020-11-08 | - |
Data de envio: dc.date.issued | 2019-11-27 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/6004 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/660543 | - |
Descrição: dc.description | Script recognition is a necessary step in automating the recognition of Optical Character Recognition (OCR) systems. The task of script recognition in handwritten documents is challenging due to the similarity between some of these styles. Our main objective in this paper is to analyze and evaluate the performance of robust techniques in eleven different script recognition. In addition to performance, we analyzed the impact of working with document, line, and word-level recognition. The Local Binary Patterns (LBP), Local Phase Quantization (LPQ), and Speeded Up Robust Features (SURF) texture descriptors were used in conjunction with the Support Vector Machine (SVM) classifier. The experiments were performed in a database with eleven classes, in order to achieve hit rates similar to those presented in the literature. The best hit rate was 97.73% using the document-level SURF texture descriptor. In line and word levels the best performance was 96% and 94.37%, respectively, using the LPQ descriptor. Through our experiments, we find that the best performance applies to the document level, followed by lines and words. We also noted that the performance improvement of handwriting recognition applications is not only related to the amount of samples used in the training process. | - |
Descrição: dc.description | O reconhecimento de estilos de escrita ou reconhecimento de script é uma etapa necessária para automatizar o reconhecimento de sistemas de Reconhecimento Óptico de Caracteres (OCR). A tarefa de reconhecimento de estilos de escrita em documentos manuscritos é desafiadora devido à similaridade entre alguns estilos de escritas. Nosso principal objetivo neste trabalho é analisar e avaliar o desempenho de técnicas robustas em onze diferentes estilos de escrita. Além do desempenho, analisamos o impacto ao se trabalhar com reconhecimento em nível de documentos,linhas e palavras. Foram utilizados os descritores de texturas Padrões Binários Locais (LBP), Quantização Local de Fase (LPQ) e Características Robustas Aceleradas (SURF) em conjunto com o classificador Maquina de Vetores de Suporte (SVM). Os experimentos foram realizados em uma base de dados com onze classes, de forma a alcançarmos taxas de acerto similares às apresentadas na literatura. A melhor taxa de acerto foi de 97,73% utilizando o descritor de textura SURF trabalhando a nível de documento, nos níveis de linhas e palavras o melhor desempenho foi de 96% e 94,37%, respectivamente, utilizando o descritor LPQ. Por meio dos experimentos realizados, concluímos que o melhor desempenho se aplica ao nível de documentos seguido por linhas e palavras. Observamos também que a melhora no desempenho de aplicações de reconhecimento de estilo de escritas não está relacionado somente com a quantidade de amostras utilizadas no processo de treinamento. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Campo Mourao | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Departamento Acadêmico de Computação | - |
Publicador: dc.publisher | Ciência da Computação | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Sistemas de reconhecimento de padrões | - |
Palavras-chave: dc.subject | Escrita - Identificação | - |
Palavras-chave: dc.subject | Computação | - |
Palavras-chave: dc.subject | Pattern recognition systems | - |
Palavras-chave: dc.subject | Writing - Identification | - |
Palavras-chave: dc.subject | Computer science | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Título: dc.title | Reconhecimento de estilos de escrita em documentos manuscritos: uma abordagem em nível de documentos, linhas e palavras | - |
Título: dc.title | Script recognition from handwritten documents : document, line and word-level approach | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: