Classificação de padrões de escoamento bifásico líquido-gás baseada em séries temporais de fração de vazio e técnicas de aprendizagem de máquina.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorSilva, Marco Jose da-
Autor(es): dc.contributorhttp://lattes.cnpq.br/3660493864159835-
Autor(es): dc.contributorSilva, Alexandre Kupka da-
Autor(es): dc.contributorhttp://lattes.cnpq.br/0353068309348963-
Autor(es): dc.contributorLazzaretti, Andre Eugenio-
Autor(es): dc.contributorhttp://lattes.cnpq.br/7649611874688878-
Autor(es): dc.contributorSilva, Marco Jose da-
Autor(es): dc.contributorhttp://lattes.cnpq.br/3660493864159835-
Autor(es): dc.creatorAmbrosio, Jefferson dos Santos-
Data de aceite: dc.date.accessioned2022-02-21T21:44:17Z-
Data de disponibilização: dc.date.available2022-02-21T21:44:17Z-
Data de envio: dc.date.issued2019-09-30-
Data de envio: dc.date.issued2019-09-30-
Data de envio: dc.date.issued2019-08-23-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/4474-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/659421-
Descrição: dc.descriptionThe classification of the flow pattern is a fundamental step in many processes that involve multiphase flow, among them, estimation of mass and/or volumetric flow, calculation of void fraction, bubble size, slip factor and so on. In this work some approaches are proposed to classify liquid-gas vertical flow patterns that combine signal processing techniques and machine learning. Wire-Mesh sensor data were used to obtain the time series of void fraction. They are analyzed through statistical and time-frequency approaches, generating parameters that are later used as inputs to the algorithms based on the Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) to finally identify the pattern. The tests performed indicate that some of the proposed algorithms perform better than 90% of the correct identification. The data used are from vertical water-air flow in 51.2mm tubes.-
Descrição: dc.descriptionO escoamento multifásico é um fenômeno presente em várias aplicações industriais, como reatores químicos, geração de energia, e na exploração, produção e transporte de petróleo e gás natural. A classificação do padrão de escoamento é uma etapa fundamental nesse tipo processo, pois, influencia diversas medidas e subprocessos como estimação de vazão mássica e/ou volumétrica, cálculo de fração de vazio, tamanho de bolha, fator de escorregamento, etc. Neste trabalho são propostas algumas abordagens de classificação de padrões para escoamento vertical líquido-gás utilizando séries temporais de fração de vazio, técnicas de processamento de sinais e aprendizado de máquina. Uma vez obtidas as séries temporais, são utilizadas duas abordagens inéditas para o problema da classificação de padrões: a primeira é atualização de um modelo de mistura de gaussianas e o segundo é a utilização da transformada de Hilbrt-Huang em séries temporais de fração de vazio. A última abordagem utilizada faz o cálculo dos quatro primeiros momentos estatísticos para gerar parâmetros para um algoritmo de classificação, muito utilizada em combinação com redes neurais para os problemas em identificação de padrões em escoamento multifásico. Posteriormente, os dados gerados através das técnicas descritas são utilizados como entrada nos algoritmos baseados em máquina de vetores suporte (Support Vector Machine - SVM) e análise de discriminante linear (Linear Discriminante analysis - LDA) para enfim, efetuar a identificação do padrão. Os resultados obtidos indicam um ótimo potencial para aplicação em sistemas reais e experimentos in loco. Foram propostos doze métodos de classificação de padrões combinando as técnicas de processamento de sinais e os algoritmos de classificação. Em alguns dos casos, a taxa de acerto foi superior a 90% no conjunto de dados referente ao escoamento água-ar vertical em tubos de 51,2mm.-
Formato: dc.formatapplication/octet-stream-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCuritiba-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma dePós-Graduação em Engenharia Elétrica e Informática Industrial-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectEscoamento bifásico-
Palavras-chave: dc.subjectAprendizado do computador-
Palavras-chave: dc.subjectModelos lineares (Estatística)-
Palavras-chave: dc.subjectAnálise discriminatória-
Palavras-chave: dc.subjectAnálise multivariada-
Palavras-chave: dc.subjectAnálise de séries temporais-
Palavras-chave: dc.subjectProcessamento de sinais - Técnicas digitais-
Palavras-chave: dc.subjectMétodos de simulação-
Palavras-chave: dc.subjectEngenharia elétrica-
Palavras-chave: dc.subjectTwo-phase flow-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectLinear models (Statistics)-
Palavras-chave: dc.subjectDiscriminant analysis-
Palavras-chave: dc.subjectMultivariate analysis-
Palavras-chave: dc.subjectTime-series analysis-
Palavras-chave: dc.subjectSignal processing - Digital technique-
Palavras-chave: dc.subjectSimulation methods-
Palavras-chave: dc.subjectElectric engineering-
Palavras-chave: dc.subjectCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA::ELETRONICA INDUSTRIAL, SISTEMAS E CONTROLES ELETRONICOS::AUTOMACAO ELETRONICA DE PROCESSOS ELETRICOS E INDUSTRIAIS-
Palavras-chave: dc.subjectEngenharia Elétrica-
Título: dc.titleClassificação de padrões de escoamento bifásico líquido-gás baseada em séries temporais de fração de vazio e técnicas de aprendizagem de máquina.-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.