Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Sanches, Ionildo José | - |
Autor(es): dc.contributor | Sanches, Ionildo José | - |
Autor(es): dc.contributor | Borges, André Pinz | - |
Autor(es): dc.contributor | Morais, Erikson Freitas de | - |
Autor(es): dc.creator | Ferreira, Jean Henrique | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:40:45Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:40:45Z | - |
Data de envio: dc.date.issued | 2020-11-18 | - |
Data de envio: dc.date.issued | 2020-11-18 | - |
Data de envio: dc.date.issued | 2016-11-10 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/15934 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/658083 | - |
Descrição: dc.description | The identification of patterns and faces in images are some branches of Computer Vision and can serve as a tool to automate a process that demands the manual work of an observer. Among the types of existing images, the infrared image or thermographic image is used in areas of medicine and engineering. In medicine, infrared images can be used to detect areas of the human anatomy with irregular situation. With this work, it is shown a tool that will locate and classify the maximum temperature value of the face in an infrared image. In order to do this, a machine learning training was performed using the AdaBoost algorithm, with face samples in infrared images, and in the face detection the Viola and Jones algorithm was used. The operation of the tool was by the detection of the face of the individual followed by the location and classification of the value of the higher temperature of the face. Comparisons were made with the results of detections obtained with different training sessions. With this data, it was noticed that more rigid classifiers discard more areas of the image, while less rigorous classifiers result in a greater amount of false positives. The final results of the development brought a methodology of detection of fever in individuals without need of direct contact, showing little difference between the axial temperature and the temperature in the infrared image. It was also possible to create a face detection file in infrared images, which correctly detected 79.51% of the faces in the images provided. | - |
Descrição: dc.description | A identificação de padrões e de faces em imagens são alguns ramos da Visão Computacional e podem servir como uma ferramenta para automatizar um processo que demanda trabalho manual de um observador. Dentre os tipos de imagens existentes, a imagem infravermelha ou imagem termográfica é utilizada em áreas da medicina e engenharia. Na medicina, as imagens infravermelhas podem ser utilizadas para detectar áreas da anatomia humana com situação irregular. Com este trabalho, mostra-se uma ferramenta que irá localizar e classificar o valor de máxima temperatura de uma face em uma imagem infravermelha. Para isso, realizou-se um treinamento para aprendizagem de máquina utilizando o algoritmo AdaBoost, com amostras de faces em imagens infravermelhas, e na detecção facial foi utilizado o algoritmo de Viola e Jones. O funcionamento da ferramenta deu-se pela detecção da face do indivíduo seguida pela localização e classificação do valor de maior temperatura da face. Foram realizadas comparações com os resultados de detecções de obtidos com diferentes treinamentos desenvolvidos. Com estes dados, percebeu-se que classificadores mais rígidos, descartam maior quantidade de áreas da imagem, enquanto classificadores menos rigorosos resultam em maior quantidade de falsos positivos. Os resultados finais do desenvolvimento trouxeram uma metodologia de detecção de febre em indivíduos sem necessidade de contato direto, apresentando pouca diferença entre a temperatura axial e a temperatura na imagem infravermelha. Também conseguiu-se criar um arquivo de detecção de faces em imagens infravermelhas, que detectou corretamente 79,51% das faces nas imagens fornecidas. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Ponta Grossa | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Departamento Acadêmico de Informática | - |
Publicador: dc.publisher | Ciência da Computação | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Pessoas - Detecção | - |
Palavras-chave: dc.subject | Detectores infravermelhos | - |
Palavras-chave: dc.subject | Temperatura corporal | - |
Palavras-chave: dc.subject | Febre | - |
Palavras-chave: dc.subject | Persons - Detection | - |
Palavras-chave: dc.subject | Infrared detectors | - |
Palavras-chave: dc.subject | Body temperature | - |
Palavras-chave: dc.subject | Fever | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Título: dc.title | Detecção de pessoas com febre por termografia infravermelha | - |
Título: dc.title | Detection of people with fever by infrared thermography | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: