Classificação automática de falhas em arquitetura orientada a serviços

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorFonseca, Mauro Sergio Pereira-
Autor(es): dc.contributorhttp://lattes.cnpq.br/6534637358360971-
Autor(es): dc.contributorVendramin, Ana Cristina Barreiras Kochem-
Autor(es): dc.contributorhttp://lattes.cnpq.br/3005557336605080-
Autor(es): dc.contributorFonseca, Mauro Sergio Pereira-
Autor(es): dc.contributorPedroso, Carlos Marcelo-
Autor(es): dc.contributorNacamura Júnior, Luiz-
Autor(es): dc.contributorTacla, Cesar Augusto-
Autor(es): dc.creatorFelix, Kleber Gonçalves-
Data de aceite: dc.date.accessioned2022-02-21T21:39:20Z-
Data de disponibilização: dc.date.available2022-02-21T21:39:20Z-
Data de envio: dc.date.issued2017-12-27-
Data de envio: dc.date.issued2017-12-27-
Data de envio: dc.date.issued2017-08-29-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/2822-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/657535-
Descrição: dc.descriptionA distributed architecture is composed of many systems that exchange messages between each other. Faults in the integration of these systems may occur and they required a detailed investigation of support professionals to identifying the root cause of the problem. The manual process to identify causes of failure is difficult and time-consuming. Significant efficiency gains can be achieved by automating the faults classification process. This work presents a method to support the automated fault diagnostic process, automatically classifying faults generated in a Service Oriented Architecture (SOA). This method denominated SOAFaultControl, may be executed in a distributed architecture that adote SOA and an Enterprise Service Bus (ESB). Using machine learning techniques, was possible build a model to classify fault messages captured in a SOA environment, in pre-established classes. To achieve the objectives of this work it was necessary to test the following machine learning algorithms: Support Vector Machine, Naive Bayes, and AdaBoost. Results show that Support Vector Machine algorithm achieved better performance in the following metrics: precision, accuracy, recall, and F1.-
Descrição: dc.descriptionUma arquitetura distribuída é composta de diversos sistemas que trocam mensagens entre si. Falhas na integração destes sistemas podem ocorrer, exigindo uma investigação detalhada dos profissionais de suporte para encontrar a causa raiz do problema. O processo manual de identificação de falhas é difícil e demorado. Ganhos significativos podem ser obtidos através da automação do processo de classificação de falhas. Este trabalho tem por objetivo apresentar um método para auxílio no processo de diagnóstico de falhas, classificando automaticamente as falhas geradas em uma arquitetura orientada a serviços. Este método, denominado SOAFaultControl, se beneficia de arquiteturas distribuídas que adotam SOA e um Enterprise Service Bus (ESB). Utilizando-se de técnicas de aprendizado de máquina, foi possível estabelecer um modelo para classificação de falhas em categorias preestabelecidas. Para alcançar o objetivo deste trabalho foi necessário testar e avaliar os seguintes algoritmos de aprendizagem de máquina: Support Vector Machine, Naive Bayes e AdaBoost. Como resultado, o algoritmo Support Vector Machine obteve melhor desempenho nas métricas: acurácia, precisão, revocação e F1.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCuritiba-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Computação Aplicada-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectSistemas operacionais distribuídos (Computadores)-
Palavras-chave: dc.subjectLocalização de falhas (Engenharia)-
Palavras-chave: dc.subjectControle automático-
Palavras-chave: dc.subjectAprendizado do computador-
Palavras-chave: dc.subjectArquitetura orientada a serviços (Computador)-
Palavras-chave: dc.subjectAlgorítmos-
Palavras-chave: dc.subjectMétodos de simulação-
Palavras-chave: dc.subjectComputação-
Palavras-chave: dc.subjectDistributed operating systems (Computers)-
Palavras-chave: dc.subjectFault location (Engineering)-
Palavras-chave: dc.subjectAutomatic control-
Palavras-chave: dc.subjectMachine learning-
Palavras-chave: dc.subjectService-oriented architecture (Computer science)-
Palavras-chave: dc.subjectAlgorithms-
Palavras-chave: dc.subjectSimulation methods-
Palavras-chave: dc.subjectComputer science-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO-
Palavras-chave: dc.subjectCiência da Computação-
Título: dc.titleClassificação automática de falhas em arquitetura orientada a serviços-
Título: dc.titleAutomatic fault classification in a service-oriented architecture-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.