Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Fonseca, Mauro Sergio Pereira | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/6534637358360971 | - |
Autor(es): dc.contributor | Vendramin, Ana Cristina Barreiras Kochem | - |
Autor(es): dc.contributor | http://lattes.cnpq.br/3005557336605080 | - |
Autor(es): dc.contributor | Fonseca, Mauro Sergio Pereira | - |
Autor(es): dc.contributor | Pedroso, Carlos Marcelo | - |
Autor(es): dc.contributor | Nacamura Júnior, Luiz | - |
Autor(es): dc.contributor | Tacla, Cesar Augusto | - |
Autor(es): dc.creator | Felix, Kleber Gonçalves | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:39:20Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:39:20Z | - |
Data de envio: dc.date.issued | 2017-12-27 | - |
Data de envio: dc.date.issued | 2017-12-27 | - |
Data de envio: dc.date.issued | 2017-08-29 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/2822 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/657535 | - |
Descrição: dc.description | A distributed architecture is composed of many systems that exchange messages between each other. Faults in the integration of these systems may occur and they required a detailed investigation of support professionals to identifying the root cause of the problem. The manual process to identify causes of failure is difficult and time-consuming. Significant efficiency gains can be achieved by automating the faults classification process. This work presents a method to support the automated fault diagnostic process, automatically classifying faults generated in a Service Oriented Architecture (SOA). This method denominated SOAFaultControl, may be executed in a distributed architecture that adote SOA and an Enterprise Service Bus (ESB). Using machine learning techniques, was possible build a model to classify fault messages captured in a SOA environment, in pre-established classes. To achieve the objectives of this work it was necessary to test the following machine learning algorithms: Support Vector Machine, Naive Bayes, and AdaBoost. Results show that Support Vector Machine algorithm achieved better performance in the following metrics: precision, accuracy, recall, and F1. | - |
Descrição: dc.description | Uma arquitetura distribuída é composta de diversos sistemas que trocam mensagens entre si. Falhas na integração destes sistemas podem ocorrer, exigindo uma investigação detalhada dos profissionais de suporte para encontrar a causa raiz do problema. O processo manual de identificação de falhas é difícil e demorado. Ganhos significativos podem ser obtidos através da automação do processo de classificação de falhas. Este trabalho tem por objetivo apresentar um método para auxílio no processo de diagnóstico de falhas, classificando automaticamente as falhas geradas em uma arquitetura orientada a serviços. Este método, denominado SOAFaultControl, se beneficia de arquiteturas distribuídas que adotam SOA e um Enterprise Service Bus (ESB). Utilizando-se de técnicas de aprendizado de máquina, foi possível estabelecer um modelo para classificação de falhas em categorias preestabelecidas. Para alcançar o objetivo deste trabalho foi necessário testar e avaliar os seguintes algoritmos de aprendizagem de máquina: Support Vector Machine, Naive Bayes e AdaBoost. Como resultado, o algoritmo Support Vector Machine obteve melhor desempenho nas métricas: acurácia, precisão, revocação e F1. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Curitiba | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Programa de Pós-Graduação em Computação Aplicada | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Sistemas operacionais distribuídos (Computadores) | - |
Palavras-chave: dc.subject | Localização de falhas (Engenharia) | - |
Palavras-chave: dc.subject | Controle automático | - |
Palavras-chave: dc.subject | Aprendizado do computador | - |
Palavras-chave: dc.subject | Arquitetura orientada a serviços (Computador) | - |
Palavras-chave: dc.subject | Algorítmos | - |
Palavras-chave: dc.subject | Métodos de simulação | - |
Palavras-chave: dc.subject | Computação | - |
Palavras-chave: dc.subject | Distributed operating systems (Computers) | - |
Palavras-chave: dc.subject | Fault location (Engineering) | - |
Palavras-chave: dc.subject | Automatic control | - |
Palavras-chave: dc.subject | Machine learning | - |
Palavras-chave: dc.subject | Service-oriented architecture (Computer science) | - |
Palavras-chave: dc.subject | Algorithms | - |
Palavras-chave: dc.subject | Simulation methods | - |
Palavras-chave: dc.subject | Computer science | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Palavras-chave: dc.subject | Ciência da Computação | - |
Título: dc.title | Classificação automática de falhas em arquitetura orientada a serviços | - |
Título: dc.title | Automatic fault classification in a service-oriented architecture | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: