Desenvolvimento de uma armband para captura de sinais eletromiográficos para reconhecimento de movimentos

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorStevan Junior, Sergio Luiz-
Autor(es): dc.contributorhttp://lattes.cnpq.br/1661935150054196-
Autor(es): dc.contributorOkida, Sergio-
Autor(es): dc.contributorhttp://lattes.cnpq.br/0034802427042185-
Autor(es): dc.contributorBalbinot, Alexandre-
Autor(es): dc.contributorPichorim, Sérgio Francisco-
Autor(es): dc.contributorParedes, Abraham Elias Ortega-
Autor(es): dc.contributorStevan Junior, Sergio Luiz-
Autor(es): dc.creatorMendes Júnior, José Jair Alves-
Data de aceite: dc.date.accessioned2022-02-21T21:34:59Z-
Data de disponibilização: dc.date.available2022-02-21T21:34:59Z-
Data de envio: dc.date.issued2017-09-15-
Data de envio: dc.date.issued2017-09-15-
Data de envio: dc.date.issued2016-12-12-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/2435-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/655894-
Descrição: dc.descriptionThis master thesis presents the development of an armband system to capture of superficial electromyography signals to arm movement recognition. All project steps, since the physical building, project of the circuits, acquisition system, processing and classification by Artificial Neural Networks are presented. An armband with eight channel to capture the electromyography signal was constructed and an auxiliary system (gyroscope) was used to indicate the instant when the arm was moved. The muscle acquired groups were the biceps and triceps. By sensor data fusion, the signals were processed by LabVIEWTM routines. After the signal characteristic extraction, the samples were forwarded to a Multi-Layer Perceptron Neural Network to movement classification of arm flexion and extension. The same armband was inserted on the forearm and the electromyography signals were compared with the signals obtained by the commercial device MyoTM. The system presented, as results, high classification rates, above of 95% and the obtained signals on the region of forearm showed similarities with the obtained ones by commercial device.-
Descrição: dc.descriptionEsta dissertação apresenta o desenvolvimento de um sistema em forma de armband para a captura de sinais de eletromiográficos de superfície para o reconhecimento de movimentos do braço. São apresentadas todas as suas etapas de projeto, desde a construção física, projeto de circuitos, sistema de aquisição, processamento e classificação por meio de Redes Neurais Artificiais. Foi construído um bracelete contendo oito canais para a captação do sinal de eletromiografia e um sistema auxiliar (giroscópio) de referência foi utilizado para indicar o instante em que o braço foi movimentado. Foram adquiridos dados dos grupos musculares do bíceps e do tríceps. Por meio da fusão de dados de sensores, os sinais foram processados por meio de rotinas no software LabVIEWTM. Após a extração de características do sinal, as amostras foram encaminhadas para uma Rede Neural Multi-Layer Perceptron para a classificação dos movimentos de flexão e extensão do braço. A mesma armband foi inserida na região do antebraço e os sinais de eletromiografia foram comparados com os sinais obtidos pelo dispositivo comercial MyoTM. O sistema apresentou como resultado altas taxas de classificação, acima de 95% e os sinais obtidos na região do antebraço apresentaram semelhanças com os obtidos pelo dispositivo comercial.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherPonta Grossa-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherPrograma de Pós-Graduação em Engenharia Elétrica-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectEletromiografia-
Palavras-chave: dc.subjectRedes neurais (Neurobiologia)-
Palavras-chave: dc.subjectSistemas de reconhecimento de padrões-
Palavras-chave: dc.subjectEngenharia elétrica-
Palavras-chave: dc.subjectElectromyography-
Palavras-chave: dc.subjectNeural networks (Neurobiology)-
Palavras-chave: dc.subjectPattern recognition systems-
Palavras-chave: dc.subjectElectric engineering-
Palavras-chave: dc.subjectCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA-
Palavras-chave: dc.subjectEngenharia Elétrica-
Título: dc.titleDesenvolvimento de uma armband para captura de sinais eletromiográficos para reconhecimento de movimentos-
Título: dc.titleDevelopment of an armband to capture of electromyography signals for movement recognition-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.