Modelos matemáticas aplicados à dinâmica de populações

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorBernardes, Mateus-
Autor(es): dc.contributorBernardes, Mateus-
Autor(es): dc.contributorBobko, Nara-
Autor(es): dc.contributorSanchez, Andrés David Baez-
Autor(es): dc.creatorPaulino, Giuliana Raquel Buzato-
Data de aceite: dc.date.accessioned2022-02-21T21:24:03Z-
Data de disponibilização: dc.date.available2022-02-21T21:24:03Z-
Data de envio: dc.date.issued2020-11-10-
Data de envio: dc.date.issued2020-11-10-
Data de envio: dc.date.issued2018-12-10-
Fonte completa do material: dc.identifierhttp://repositorio.utfpr.edu.br/jspui/handle/1/9050-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/651795-
Descrição: dc.descriptionThis work presents an application of differential equations to population dynamics. Presenting a review of some of the major literature models such as the Malthus who was the first to precede mathematical tools to estimate world population growth in 1798. Years after Verhurst in 1837, develop a model based on Malthus, growth rate of so that a trend tended to stability. Other types of logistic research from Verhurst will be cited for the growth of isolated communities. When the rules are interdisciplinary result in systems of differential equations, these models contemplate situations of conviviality that vary in a simulated way, pass through intraspecific competition or even the famous face-to-face model of Lotka-Volterra. Other occurrences of coexistence of populations that are analyzed are like a population subject to a free growth, with an interference of a control problem that affects an initial population.-
Descrição: dc.descriptionEste trabalho apresenta algumas aplicações de equações diferenciais à dinâmica populacional. Apresentando uma revisão de alguns dos principais modelos da literatura como o de Malthus que foi o primeiro a utilizar ferramentas matemáticas para estimar o crescimento da população mundial em 1798. Anos depois Verhurst em 1837, desenvolve um modelo baseado no modelo de Malthus, onde propõe uma alteração na taxa de crescimento de modo que a população tendesse à estabilidade. Serão citados outros modelos baseado na equação logística de Verhurst, aplicados ao crescimento de populações isoladas. Quando consideramos populações que interagem entre si, passamos a lidar com um sistema de equações diferenciais ordinárias. Estes modelos contemplam situações de convívio que variam desde a simbiose, passando pela competição intraespecífica ou mesmo o famoso modelo presa-predador de Lotka-Volterra. Outras situações de convívio de populações que serão analisadas, são as que uma população sujeita a um crescimento livre sofre com a interferência de um agente te controle que afetara a população inicial-
Formato: dc.formatapplication/pdf-
Idioma: dc.languagept_BR-
Publicador: dc.publisherUniversidade Tecnológica Federal do Paraná-
Publicador: dc.publisherCuritiba-
Publicador: dc.publisherBrasil-
Publicador: dc.publisherLicenciatura em Matemática-
Publicador: dc.publisherUTFPR-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectSistemas não-lineares-
Palavras-chave: dc.subjectEquações diferenciais-
Palavras-chave: dc.subjectMalthusianismo-
Palavras-chave: dc.subjectPrevisão demográfica-
Palavras-chave: dc.subjectMatemática-
Palavras-chave: dc.subjectNonlinear systems-
Palavras-chave: dc.subjectDifferential equations-
Palavras-chave: dc.subjectMalthusianism-
Palavras-chave: dc.subjectPopulation forecasting-
Palavras-chave: dc.subjectMathematics-
Palavras-chave: dc.subjectCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA-
Título: dc.titleModelos matemáticas aplicados à dinâmica de populações-
Título: dc.titleMathematical model applied to populations dynamics-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositorio Institucional da UTFPR - RIUT

Não existem arquivos associados a este item.