Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Pessini, Evando Carlos | - |
Autor(es): dc.contributor | Pessini, Evando Carlos | - |
Autor(es): dc.contributor | Bazzi, Claudio Leones | - |
Autor(es): dc.contributor | Araújo, Everton Coimbra de | - |
Autor(es): dc.contributor | Lamb, Juliano Rodrigo | - |
Autor(es): dc.creator | Scaravonatti, Jozua Henrique Schuster | - |
Data de aceite: dc.date.accessioned | 2022-02-21T21:23:18Z | - |
Data de disponibilização: dc.date.available | 2022-02-21T21:23:18Z | - |
Data de envio: dc.date.issued | 2020-11-15 | - |
Data de envio: dc.date.issued | 2020-11-15 | - |
Data de envio: dc.date.issued | 2015-06-10 | - |
Fonte completa do material: dc.identifier | http://repositorio.utfpr.edu.br/jspui/handle/1/13380 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/651524 | - |
Descrição: dc.description | This work’s objective is to present a crop forecast model based on the soy production history and the weather data for the state of Paraná. The research was made with the soy crop data of the years from 2003 to 2012 from 8 cities of the state, these data were collected together with the Secretary of Agriculture and Supply of Paraná(SEAB). The weather data were obtained through the National Institute of Meteorology. The software responsible for crossing data and making the crop forecast is Weka. Willing to generate crop forecast models some algorithms were used from Weka, Linear Refression, Pace Regression e LeastMedSq Regression are algorithms that work for these models. The weather data to be mined were grouped by monthly, bimonthly and quarterly means aiming to check which one of them would have the best result. After the forecast models were generated, they have been validated through samples, willing to find a model having the result closest to the predicted one and the real value. | - |
Descrição: dc.description | Este trabalho tem como o objetivo apresentar um modelo de previsão de safra com base no histórico de produção de soja e dados climáticos do estado do Paraná. O estudo foi realizado com os dados das safras de soja dos anos de 2003 a 2012 de 8 cidades do estado, dados estes coletados junto à Secretária da Agricultura e do Abastecimento do Paraná(SEAB). Os dados climáticos foram obtidos através do Instituto Nacional de Meteorologia. Foi utilizado o software de mineração de dados Weka, responsável por cruzar os dados e fazer a previsão de safra. Com a intenção de gerar modelos de previsão de safra foi empregado algoritmos do Weka, Linear Regression, Pace Regression e LeastMedSq Regression. São algoritmos que trabalham para a formulação desses moldes. Os dados climáticos a serem minerados foram agrupados por medias mensais, bimestrais e trimestrais a fim de verificar qual deles teriam os melhores resultados. Após a geração dos modelos de previsão, os mesmos foram validados por meio de amostras, com a intenção de encontrar um modelo que o resultado mais aproxime a estimativa alcançada e o valor real. | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | pt_BR | - |
Publicador: dc.publisher | Universidade Tecnológica Federal do Paraná | - |
Publicador: dc.publisher | Medianeira | - |
Publicador: dc.publisher | Brasil | - |
Publicador: dc.publisher | Análise e Desenvolvimento de Sistemas | - |
Publicador: dc.publisher | UTFPR | - |
Direitos: dc.rights | openAccess | - |
Palavras-chave: dc.subject | Cultivos agrícolas - Rendimento | - |
Palavras-chave: dc.subject | Mineração de dados (Computação) | - |
Palavras-chave: dc.subject | Produtividade agrícola | - |
Palavras-chave: dc.subject | Crop yields | - |
Palavras-chave: dc.subject | Data mining | - |
Palavras-chave: dc.subject | Agricultural productivity | - |
Palavras-chave: dc.subject | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | - |
Título: dc.title | Aplicação da técnica de regressão para análise de dados climáticos e previsão de safra | - |
Título: dc.title | Applying regression technique of for climatic data analysis and crop forecast | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositorio Institucional da UTFPR - RIUT |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: