Paleoproterozoic juvenile magmatism within the northeastern sector of the São Francisco paleocontinent : insights from the shoshonitic high Ba–Sr Montezuma granitoids.

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBersan, Samuel Moreira-
Autor(es): dc.creatorCosta, Alice Fernanda de Oliveira-
Autor(es): dc.creatorDanderfer Filho, André-
Autor(es): dc.creatorAbreu, Francisco Robério de-
Autor(es): dc.creatorLana, Cristiano de Carvalho-
Autor(es): dc.creatorQueiroga, Gláucia Nascimento-
Autor(es): dc.creatorStorey, Craig Darryl-
Autor(es): dc.creatorMoreira, Hugo Souza-
Data de aceite: dc.date.accessioned2022-02-21T19:59:04Z-
Data de disponibilização: dc.date.available2022-02-21T19:59:04Z-
Data de envio: dc.date.issued2021-03-23-
Data de envio: dc.date.issued2021-03-23-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttp://www.repositorio.ufop.br/handle/123456789/13162-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.gsf.2020.01.017-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/650696-
Descrição: dc.descriptionNew, integrated petrographic, mineral chemistry, whole rock geochemical, zircon and titanite U–Pb geochronology, and zircon Hf isotopic data from the Montezuma granitoids, as well as new geochemical results for its host rocks represented by the Corrego Tingui Complex, provides new insights into the late- to post-collisional evolution of the northeastern S~ao Francisco paleocontinent. U–Pb zircon dates from the Montezuma granitoids spread along the Concordia between ca. 2.2 Ga to 1.8 Ga and comprise distinct groups. Group I have crystallization ages between ca. 2.15 Ga and 2.05 Ga and are interpreted as inherited grains. Group II zircon dates vary from 2.04 Ga to 1.9 Ga and corresponds to the crystallization of the Montezuma granitoids, which were constrained at ca. 2.03 Ga by the titanite U–Pb age. Inverse age zoning is common within the ca. 1.8 Ga Group III zircon ages, being related to fluid isotopic re-setting during the Espinhaco rifiting event. Zircon εHf(t) analysis show dominantly positive values for both Group I ( 4 to þ9) and II ( 3 to þ8) zircons and TDM2 model ages of 2.7–2.1 Ga and 2.5–1.95 Ga, respectively. Geochemically, the Montezuma granitoids are weakly peraluminous to metaluminous magnesian granitoids, enriched in LILES and LREE, with high to moderate Mg# and depleted in some of the HFSE. Their lithochemical signature, added to the juvenile signature of both inherited and crystallized zircons, allowed its classification as a shoshonitic high Ba–Sr granitoid related to a late- to post-collisional lithosphere delamination followed by asthenospheric upwelling. In this scenario, the partial melting of the lithospheric mantle interacted with the roots of an accreted juvenile intra-oceanic arc, being these hybrid magma interpreted as the source of the Montezuma granitoids. The Corrego Tinguí Complex host rocks are akin to a syn- to late-collisional volcanic arc granitoids originated from the partial melting of ancient crustal rocks. The results presented in this study have revealed the occurrence of juvenile rocks, probably related to an island arc environment, that are exotic in relation to the Paleo- to Neoarchean crust from the S~ao Francisco paleocontinent’s core.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Direitos: dc.rightsaberto-
Direitos: dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Fonte: o próprio artigo.-
Palavras-chave: dc.subjectZircon U–Pb-Hf-
Palavras-chave: dc.subjectTitanite U–Pb-
Palavras-chave: dc.subjectLate- to post-collisional-
Título: dc.titlePaleoproterozoic juvenile magmatism within the northeastern sector of the São Francisco paleocontinent : insights from the shoshonitic high Ba–Sr Montezuma granitoids.-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.