Theoretical investigation on H2O2-Ng (He, Ne, Ar, Kr, Xe, and Rn) complexes suitable for stereodynamics : interactions and thermal chiral rate consequences

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSó, Yuri Alves de Oliveira-
Autor(es): dc.creatorOliveira Neto, Pedro Henrique de-
Autor(es): dc.creatorMacedo, Luiz Guilherme Machado de-
Autor(es): dc.creatorGargano, Ricardo-
Data de aceite: dc.date.accessioned2021-10-14T17:23:42Z-
Data de disponibilização: dc.date.available2021-10-14T17:23:42Z-
Data de envio: dc.date.issued2021-06-10-
Data de envio: dc.date.issued2021-06-10-
Data de envio: dc.date.issued2019-01-18-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/41145-
Fonte completa do material: dc.identifierhttps://doi.org/10.3389/fchem.2018.00671-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/606878-
Descrição: dc.descriptionAlthough molecular collisions of noble gases (Ng) can be theoretically used to distinguish between the enantiomers of hydrogen peroxide - H2O2 (HP), little is known about the effects of HP-Ng interactions on the chiral rate. In this work, the chiral rate as a function of temperature (CRT) between enantiomeric conformations of HP and Ng (Ng=He, Ne, Ar, Kr, Xe, and Rn) are presented at MP2(full)/aug-cc-pVTZ level of theory through a fully basis set superposition error (BSSE) corrected potential energy surface. The results show that: (a) the CRT is highly affected even at a small decrease in the height of trans-barrier; (b) its smallest values occur with Ne for all temperatures between 100 and 4,000 K; (c) that the decrease of CRT shows an inverse correlation with respect to the average valence electron energy of the Ng and (d) Ne and He may be the noble gases more suitable for study the oriented collision dynamics of HP. In addition to binding energies, the electron density ρ and its Laplacian ∇2ρ topological analyses were also performed within the atoms in molecules (AIM) theory in order to determine the nature of the HP-Ng interactions. The results of this work provide a more complete foundation on experiments to study HP's chirality using Ng in crossed molecular beams without a light source.-
Formato: dc.formatapplication/pdf-
Publicador: dc.publisherFrontiers-
Direitos: dc.rightsAcesso Aberto-
Direitos: dc.rightsCopyright © 2019 Só, Neto, de Macedo and Gargano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
Palavras-chave: dc.subjectPeróxido de hidrogênio-
Palavras-chave: dc.subjectGases nobres-
Palavras-chave: dc.subjectEstereodinâmica-
Palavras-chave: dc.subjectEnantiômeros-
Título: dc.titleTheoretical investigation on H2O2-Ng (He, Ne, Ar, Kr, Xe, and Rn) complexes suitable for stereodynamics : interactions and thermal chiral rate consequences-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.