A genetic algorithm approach to design principles for organic photovoltaic materials

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorSousa, Leonardo Evaristo de-
Autor(es): dc.creatorSilva Filho, Demétrio Antônio da-
Autor(es): dc.creatorSilva, Piotr de-
Autor(es): dc.creatorRibeiro, Luciano-
Autor(es): dc.creatorOliveira Neto, Pedro Henrique de-
Data de aceite: dc.date.accessioned2021-10-14T17:21:00Z-
Data de disponibilização: dc.date.available2021-10-14T17:21:00Z-
Data de envio: dc.date.issued2020-06-26-
Data de envio: dc.date.issued2020-06-26-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttps://repositorio.unb.br/handle/10482/38288-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/605776-
Descrição: dc.descriptionThe increase in the efficiency of organic photovoltaic (OPV) devices relies on understanding the underlying science of several interconnected physical mechanisms that prevent 1D optimization strategies to succeed. Here, a combination of kinetic Monte Carlo simulations of exciton dynamics with a genetic algorithm to automatically optimize the external quantum efficiency of donor–acceptor interfaces under different scenarios is employed. Simulations include phenomena from light absorption to exciton diffusion, dissociation, radiative recombination, and internal conversion, thus modeling the main physical processes that define the overall efficiency of an OPV up to charge separation. It is shown that when internal conversion is kept in check, the combination of optimal transition dipole moments and absorption energies points at low bandgap polymers as the most promising candidates for donor materials. However, when non-radiative deexcitation mechanisms are stronger, the optimization strategy shifts toward higher bandgaps, focusing rather on increasing the fluorescence quantum yield of the donor. Finally, the approach shows that adjusting the energy levels of the acceptor so that exciton transfers across the interface become negligible produces important gains in efficiency and at the same time reduces the system’s dependence on large electronic couplings. The findings indicate pathways for engineering highly efficient organic interfaces.-
Publicador: dc.publisherWiley-VCH-
Direitos: dc.rightsAcesso Restrito-
Palavras-chave: dc.subjectDispositivos fotovoltaicos orgânicos-
Palavras-chave: dc.subjectMétodos de simulação-
Palavras-chave: dc.subjectAlgoritmos genéticos-
Título: dc.titleA genetic algorithm approach to design principles for organic photovoltaic materials-
Tipo de arquivo: dc.typeaula digital-
Aparece nas coleções:Repositório Institucional – UNB

Não existem arquivos associados a este item.