Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Pereira Junior, Álvaro Rodrigues | - |
Autor(es): dc.creator | Rezende, Diego Dutra de | - |
Data de aceite: dc.date.accessioned | 2019-11-06T13:32:44Z | - |
Data de disponibilização: dc.date.available | 2019-11-06T13:32:44Z | - |
Data de envio: dc.date.issued | 2015-03-12 | - |
Data de envio: dc.date.issued | 2015-03-12 | - |
Data de envio: dc.date.issued | 2014 | - |
Fonte completa do material: dc.identifier | http://www.repositorio.ufop.br/handle/123456789/4587 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/557716 | - |
Descrição: dc.description | Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto. | - |
Descrição: dc.description | Com o aumento da capacidade de processamento dos computadores nos últimos anos, uma área específica da computação tem despertado a atenção tanto da academia quanto da indústria: a área de Recuperação de Informação em Música (do inglês, Music Information Retrieval _ MIR). Em especial, sistemas que reconhecem automaticamente áudio sendo tocado, seja em um sinal que vem da Web, seja gravando o áudio em dispositivos móveis, tem ganhado especial importância. Em tempos passados, havia ciência para se reconhecer áudio com precisão aceitável, como na faixa de 90%, mas os métodos não eram eficientes ao ponto de serem aplicados em escala, por exemplo, para a aplicação de reconhecimento de áudio em Web rádios, considerando-se um volume de milhares de rádios monitoradas em tempo real e índices da ordem de milhões de músicas. Hoje em dia os métodos não se desenvolveram tanto, mas o poder computacional disponível comercialmente é muito maior, permitindo então o desenvolvimento de uma gama de inovações tecnológicas na área. Nesta dissertação é apresentado um novo modelo de reconhecimento de áudio, capaz de usar o aprendizado supervisionado de máquina a partir de dados rotulados automaticamente para agregar diferentes métodos de reconhecimento de áudio, visando aumentar a precisão do reconhecimento, sem perder em eficiência. A rotulagem automática, cujo resultado é usado na etapa de treino, é possível porque as Web rádios são transmitidas usando protocolos e parâmetros conhecidos, de forma que é possível gerar dados sintéticos para treino e depois aplicar o modelo aprendido sobre as rádios reais. Neste trabalho mostra-se que, se os parâmetros das rádios são bem definidos, a combinação de métodos de reconhecimento utilizando o modelo proposto pode reduzir a perda (ou erro) do método de reconhecimento heurístico em até 55%, chegando a ter revocação média muito próxima de 100%. Isto considerando como baseline um método heurístico que está em execução em um sistema comercial que audita a ocorrência de propagandas em rádios que transmitem pela Web. | - |
Idioma: dc.language | pt_BR | - |
Direitos: dc.rights | Autorização concedida ao Repositório Institucional da UFOP pelo autor, 09/03/2015, com as seguintes condições: disponível sob Licença Creative Commons 3.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta. | - |
Palavras-chave: dc.subject | Reconhecimento | - |
Palavras-chave: dc.subject | Eletrônica digital | - |
Palavras-chave: dc.subject | Radiodifusão | - |
Palavras-chave: dc.subject | Recuperação da informação | - |
Palavras-chave: dc.subject | Aprendizado de máquina | - |
Título: dc.title | Um modelo de classificação supervisionada com rotulagem automática para reconhecimento de áudio de web rádios. | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - UFOP |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: