A hierarchical hybrid neural model in short-termload forecasting

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCarpinteiro, Otávio Augusto Salgado-
Autor(es): dc.creatorReis, Agnaldo José da Rocha-
Autor(es): dc.creatorQuintanilha Filho, Paulo Sergio-
Data de aceite: dc.date.accessioned2019-11-06T13:24:31Z-
Data de disponibilização: dc.date.available2019-11-06T13:24:31Z-
Data de envio: dc.date.issued2012-07-24-
Data de envio: dc.date.issued2012-07-24-
Data de envio: dc.date.issued2004-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/123456789/1189-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/554751-
Descrição: dc.descriptionThis paper proposes a novel neural model to the problem of short-term load forecasting. The neural model is made up o f two self-organizing map nets one on top of the other |,and a single-layer perceptron. It has application into domains in which the context information given by former events plays aprimary role. The model was trained and assessed onload data extracted from a Brazilian electric utility. It was required to predict once every hour the electric load during the next six hours. The paper presents the results, and evaluates them.-
Idioma: dc.languageen-
Direitos: dc.rightsO Periódico Applied Soft Computing concede permissão para depósito do artigo no Repositório Institucional da UFOP. Número da licença: 3291280500461.-
Título: dc.titleA hierarchical hybrid neural model in short-termload forecasting-
Aparece nas coleções:Repositório Institucional - UFOP

Não existem arquivos associados a este item.