Newton's ellipse

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorRimmer, Bob-
Data de aceite: dc.date.accessioned2019-08-21T19:29:37Z-
Data de disponibilização: dc.date.available2019-08-21T19:29:37Z-
Data de envio: dc.date.issued2009-
Data de envio: dc.date.issued2009-09-17-
Data de envio: dc.date.issued2011-01-28-
Data de envio: dc.date.issued2011-01-28-
Data de envio: dc.date.issued2011-01-28-
Fonte completa do material: dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/16146-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/493205-
Descrição: dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática-
Descrição: dc.descriptionEnsino Médio::Matemática-
Descrição: dc.descriptionNewton showed this construction in Book 1, Section 4, Lemma 15, of Principia. On March 13, 1964, Feynman resurrected the construction and used it in a lecture, "The Motion of Planets Around the Sun". The lecture is detailed in a book with audio CD, Feynman's Lost Lecture, by David and Judith Goodstein. In the lecture, Feynman used the diagram and differential geometry to prove the planetary laws of motion. In the construction, the green dot is the primary focus of the ellipse about which the planet orbits; the blue dot is the secondary focus. The black dot is on a circle at a distance in radius equal in length to the major axis of an ellipse. A line is drawn from the blue dot to the black dot and its perpendicular bisector is constructed. The point where this perpendicular bisector intersects the line from the green dot (primary focus) to the black dot (circle) is a point on the ellipse. The perpendicular bisector is tangent to the ellipse at this point. A further interesting point of the construction is that the length of the line from the blue dot (secondary focus) to the black dot (circle) is proportional to the velocity of the orbiting planet at this point. In the Demonstration, half this length is represented by the black vector traveling in the direction of the planet. All of the possible ellipses with the given major axis are contained in the circle. You can adjust the eccentricity and rotation of the ellipse-
Idioma: dc.languageen-
Publicador: dc.publisherWolfram Demonstrations Project-
Relação: dc.relationNewtonsEllipse.nbp-
Relação: dc.relationoai:handle/mec/17731-
Direitos: dc.rightsDemonstrations freeware using MathematicaPlayer-
???dc.source???: dc.sourcehttp://demonstrations.wolfram.com/topic.html?topic=Differential+Geometry&start=21&limit=20&sortmethod=recent-
Palavras-chave: dc.subjectDifferential geometry-
Palavras-chave: dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria-
Palavras-chave: dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Geometria Diferencial-
Título: dc.titleNewton's ellipse-
???dc.description2???: dc.description2Studying the construction of Newton's Ellipse and its properties-
???dc.description3???: dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Aparece nas coleções:Repositório Institucional - MEC BIOE

Não existem arquivos associados a este item.