Complex multiplication

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorKiehl, John-
Data de aceite: dc.date.accessioned2019-08-21T19:29:05Z-
Data de disponibilização: dc.date.available2019-08-21T19:29:05Z-
Data de envio: dc.date.issued2009-
Data de envio: dc.date.issued2009-09-11-
Data de envio: dc.date.issued2013-03-13-
Data de envio: dc.date.issued2013-03-13-
Data de envio: dc.date.issued2013-03-13-
Fonte completa do material: dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22658-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/493024-
Descrição: dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática-
Descrição: dc.descriptionEnsino Médio::Matemática-
Descrição: dc.descriptionA complex number is a two-dimensional number and as such needs two coordinates to describe it. We usually use its x, y coordinates, where x represents its real component, and y represents its imaginary component. When expressed this way a complex number looks like this: x+yi. There is another method that is more natural for understanding how complex numbers multiply. You can represent a complex number by its magnitude—its distance from the origin—and its argument—its angle as measured counterclockwise from the positive real number line. These two numbers taken together uniquely determine every complex number, just as readily as x+yi. So, now when we multiply two complex numbers together we get a third complex number whose argument is just the sum of the two original arguments. Drag the green or blue complex numbers around and notice how their product, represented by the red dot, has an argument equal to the sum of the green dot's angle and the blue dot's angle-
Idioma: dc.languageen-
Publicador: dc.publisherWolfram Demonstrations Project-
Relação: dc.relationComplexMultiplication.nbp-
Direitos: dc.rightsDemonstration freeware using MathematicaPlayer-
???dc.source???: dc.sourcehttp://demonstrations.wolfram.com/topic.html?topic=Complex+Analysis&start=41&limit=20&sortmethod=recent-
Palavras-chave: dc.subjectComplex analysis-
Palavras-chave: dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Conjuntos-
Palavras-chave: dc.subjectEducação Básica::Ensino Médio::Matemática::Números e operações-
Título: dc.titleComplex multiplication-
???dc.description2???: dc.description2Representing an imaginary number by its magnitude and its argument, the multiplication in the complex number is shown, in this demonstration, by the sum of the argument of two imaginary numbers-
???dc.description3???: dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Find it in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Aparece nas coleções:Repositório Institucional - MEC BIOE

Não existem arquivos associados a este item.