Study of the dynamic behavior of the rossler system

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorNasri, Zakia-
Autor(es): dc.creatorBinous, Housam-
Data de aceite: dc.date.accessioned2019-08-21T19:20:00Z-
Data de disponibilização: dc.date.available2019-08-21T19:20:00Z-
Data de envio: dc.date.issued2008-
Data de envio: dc.date.issued2008-12-15-
Data de envio: dc.date.issued2008-12-15-
Data de envio: dc.date.issued2008-12-15-
Data de envio: dc.date.issued2008-11-07-
Fonte completa do material: dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/8098-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/489527-
Descrição: dc.descriptionDifferential Equations, periodic behavior, period doubling, chaotic behavior, Rossler System-
Descrição: dc.descriptionThis Demonstration presents the dynamic behavior of the Rossler system, which is governed by: dx/dt = -y – z dy/dt = x + ay dz/dt = b+ z(x - c) For a particular selection of the model parameters a, b and c, you can observe periodic behavior, period doubling, or chaotic behavior. This Demonstration illustrates several important concepts of nonlinear dynamics, such as the time-series plot, phase-space diagram, power spectrum, and autocorrelation function plot-
Descrição: dc.descriptionComponente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática-
Idioma: dc.languageen-
Publicador: dc.publisherWolfram Demonstration Project-
Relação: dc.relationStudyOfTheDynamicBehaviorOfTheRosslerSystem.nbp-
Direitos: dc.rightsDemonstration freeware using Mathematica Player-
???dc.source???: dc.sourcehttp://demonstrations.wolfram.com/StudyOfTheDynamicBehaviorOfTheRosslerSystem/-
Palavras-chave: dc.subjectRossler System-
Palavras-chave: dc.subjectDifferential equations-
Palavras-chave: dc.subjectDynamic Behavior-
Palavras-chave: dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Equações Diferenciais Funcionais-
Título: dc.titleStudy of the dynamic behavior of the rossler system-
???dc.description2???: dc.description2For a = b = 0.2 and c = 10, you can observe chaotic behavior, which is confirmed by the power spectrum diagram. The phase space diagram is that of a chaotic attractor. For a = b = 0.2 and c = 1, the power spectrum has few discrete bands, which confirms the periodic behavior. Also, a limit cycle is observed in the phase space diagram-
???dc.description3???: dc.description3This demonstration needs the "MathematicaPlayer.exe" to run. Found in http://objetoseducacionais2.mec.gov.br/handle/mec/4737-
Aparece nas coleções:Repositório Institucional - MEC BIOE

Não existem arquivos associados a este item.