An IMO triangle problem

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorPavlyk, Oleksandr-
Data de aceite: dc.date.accessioned2019-08-21T18:27:51Z-
Data de disponibilização: dc.date.available2019-08-21T18:27:51Z-
Data de envio: dc.date.issued2016-10-26-
Data de envio: dc.date.issued2016-10-26-
Fonte completa do material: dc.identifierhttp://acervodigital.unesp.br/handle/unesp/366329-
Fonte completa do material: dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/22632-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/472535-
Descrição: dc.descriptionThe International Mathematical Olympiad (IMO) of 2006 was held in Slovenia. This Demonstration shows that P moves along the brown circle with center at the intersection of the circumcircle and the bisector of the angle A. The point P is constrained to move so that LPBA+LPCA = LPBC+LPCB. This is based on a problem presented at IMO as follows. Let ABC be a triangle with incentre I. A point P in the interior of the triangle satisfies LPBA+LPCA = LPBC+LPCB. Show that AP ≥ AI, and that equality holds if and only if P=I-
Descrição: dc.descriptionEnsino Médio::Matemática-
Descrição: dc.descriptionEducação Superior::Ciências Exatas e da Terra::Matemática-
Publicador: dc.publisherWolfram Demonstrations Project-
Relação: dc.relationAnIMOTriangleProblem.nbp-
Direitos: dc.rightsDemonstration freeware using MthematicaPlayer-
Palavras-chave: dc.subjectMathematics problems-
Palavras-chave: dc.subjectEducação Superior::Ciências Exatas e da Terra::Matemática::Geometria e Topologia-
Palavras-chave: dc.subjectEducação Básica::Ensino Médio::Matemática::Geometria-
Título: dc.titleAn IMO triangle problem-
Tipo de arquivo: dc.typetexto-
Aparece nas coleções:Repositório Institucional - Acervo Digital Unesp

Não existem arquivos associados a este item.