
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Universidade Estadual Paulista (UNESP) | - |
| Autor(es): dc.creator | Boucher, Chris | - |
| Data de aceite: dc.date.accessioned | 2019-08-21T18:19:44Z | - |
| Data de disponibilização: dc.date.available | 2019-08-21T18:19:44Z | - |
| Data de envio: dc.date.issued | 2016-10-26 | - |
| Data de envio: dc.date.issued | 2016-10-26 | - |
| Fonte completa do material: dc.identifier | http://acervodigital.unesp.br/handle/unesp/362963 | - |
| Fonte completa do material: dc.identifier | http://objetoseducacionais2.mec.gov.br/handle/mec/7293 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/469169 | - |
| Descrição: dc.description | Functions of the form w=f(z), where w and zare complex numbers, are difficult to visualize; their domains and ranges generally have two real dimensions, so the graph of the function lives in four-dimensional Euclidean space. In this Demonstration you can see how a few simple such functions transform a square of the plane. Points in the image (right) are colored to match their pre-images (left). For functions that are not one-to-one, sometimes points in the image plane (right) are the image of more than one point in the domain square. When this happens, the color of the point in the image plane is a blend of the colors of its pre-images. Drag the black dot on the left to move the square in the domain plane | - |
| Descrição: dc.description | Componente Curricular::Educação Superior::Ciências Exatas e da Terra::Matemática | - |
| Publicador: dc.publisher | Wolfram Demonstration Project | - |
| Relação: dc.relation | MappingASquareByComplexFunctions.nbp | - |
| Direitos: dc.rights | Demonstration freeware using Mathematica Player | - |
| Palavras-chave: dc.subject | Complex functions | - |
| Palavras-chave: dc.subject | Educação Superior::Ciências Exatas e da Terra::Matemática::Geometria Algébrica | - |
| Título: dc.title | Mapping a square by complex functions | - |
| Tipo de arquivo: dc.type | texto | - |
| Aparece nas coleções: | Repositório Institucional - Acervo Digital Unesp | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: