Quotients and remainders wheel

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorZeleny, Enrique-
Data de aceite: dc.date.accessioned2019-08-21T18:16:06Z-
Data de disponibilização: dc.date.available2019-08-21T18:16:06Z-
Data de envio: dc.date.issued2016-10-26-
Data de envio: dc.date.issued2016-10-26-
Fonte completa do material: dc.identifierhttp://acervodigital.unesp.br/handle/unesp/361476-
Fonte completa do material: dc.identifierhttp://objetoseducacionais2.mec.gov.br/handle/mec/9064-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/467682-
Descrição: dc.descriptionKnowledge about Number Bases and Number Theory-
Descrição: dc.descriptionTake the fraction 1/7 as an example. The digits 1, 4, 2, 8, 5, 7 are the quotients (inner ring) and 3, 2, 6, 4, 5, 1 are the remainders (outer ring). Notice that 1+8=4+5=2+7=9 and 3+4=2+5=1+6=7. In general, let q be the denominator of a fraction. If q is prime and the multiplicative order of q(mod10) is even, then this fraction has the property that the digits of its decimal expansion repeat in cycles. The length of the period is equal to the smallest integer e such that 10^8=1 mod10. In the particular case that 10 is a primitive root of this prime, the length of the cycle is q-1. Also, because there are an even number of them, the digits can be divided into two halves. The digits of the decimal expansion can be regarded as quotients arising from the long division algorithm. The remainders in the long division appear in cycles too, then. Arranging the digits of the fraction with the remainders in two circles, diametrically opposite directions sum to 9 in the inner ring and to the denominator in the outer ring. The first digit is at the top and the digits are arranged clockwise, as indicated by the black arrow-
Descrição: dc.descriptionComponente Curricular::Ensino Fundamental::Séries Finais::Matemática-
Relação: dc.relation175QuotientsAndRemaindersWheel.nbp-
Direitos: dc.rightsDemonstration freeware using Mathematica Player-
Palavras-chave: dc.subjectNumber Bases-
Palavras-chave: dc.subjectNumber Theory-
Palavras-chave: dc.subjectEducação Básica::Ensino Fundamental Final::Matemática::Aritmética-
Título: dc.titleQuotients and remainders wheel-
Tipo de arquivo: dc.typetexto-
Aparece nas coleções:Repositório Institucional - Acervo Digital Unesp

Não existem arquivos associados a este item.