Persistence length convergence and universality for the self-avoiding random walk

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorGranzotti, C. R. F.-
Autor(es): dc.creatorRibeiro, F. L.-
Autor(es): dc.creatorMartinez, A. S.-
Autor(es): dc.creatorSilva, M. A. A. da-
Data de aceite: dc.date.accessioned2026-02-09T12:55:18Z-
Data de disponibilização: dc.date.available2026-02-09T12:55:18Z-
Data de envio: dc.date.issued2020-04-14-
Data de envio: dc.date.issued2020-04-14-
Data de envio: dc.date.issued2019-01-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/40010-
Fonte completa do material: dc.identifierhttps://iopscience.iop.org/article/10.1088/1751-8121/aaeeb0-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1170947-
Descrição: dc.descriptionIn this study, we show the convergence and new properties of persistence length, , for the self-avoiding random walk model (SAW) using Monte Carlo data. We generate high precision estimates of several conformational quantities with a pivot algorithm for the square, hexagonal, triangular, cubic and diamond lattices with path lengths of 103 steps. For each lattice, we accurately estimate the asymptotic limit , which corroborates the convergence of to a constant value, and allows us to check the universality on the curves. Based on the estimates we make an ansatz for dependency with lattice cell and spatial dimension, we also find a new geometric interpretation for the persistence length.-
Idioma: dc.languageen-
Publicador: dc.publisherIOP Publishing-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceJournal of Physics A: Mathematical and Theoretical-
Título: dc.titlePersistence length convergence and universality for the self-avoiding random walk-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.