Using the Box-Cox family of distributions to model censored data

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorNakamura, Luiz R.-
Autor(es): dc.creatorRamires, Thiago G.-
Autor(es): dc.creatorRighetto, Ana J.-
Autor(es): dc.creatorSilva, Viviane C.-
Autor(es): dc.creatorKonrath, Andréa C.-
Data de aceite: dc.date.accessioned2026-02-09T12:45:15Z-
Data de disponibilização: dc.date.available2026-02-09T12:45:15Z-
Data de envio: dc.date.issued2023-04-18-
Data de envio: dc.date.issued2023-04-18-
Data de envio: dc.date.issued2022-12-30-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/56666-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1167600-
Descrição: dc.descriptionThe study of the expected time until an event of interest is a recurring topic in different fields, suchas medical, economics and engineering. The Kaplan-Meier method and the Cox proportional hazardsmodel are the most used methodologies to deal with such kind of data. Nevertheless, in recent years,the generalised additive models for location, scale and shape (GAMLSS) models – which can be seen asdistributional regression and/or beyond the mean regression models – have been standing out as a resultof its highly flexibility and ability to fit complex data. GAMLSS are a class of semi-parametric regres-sion models, in the sense that they assume a distribution for the response variable, and any and all of itsparameters can be modelled as linear and/or non-linear functions of a set of explanatory variables. In thispaper, we present the Box-Cox family of distributions under the distributional regression framework asa solid alternative to model censored data.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherBrazilian Region of the International Biometric Society (RBras)-
Direitos: dc.rightsAttribution 4.0 International-
Direitos: dc.rightsAttribution 4.0 International-
Direitos: dc.rightsacesso aberto-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
???dc.source???: dc.sourceBrazilian Journal of Biometrics (BJB)-
Palavras-chave: dc.subjectGAMLSS-
Palavras-chave: dc.subjectKidney disease-
Palavras-chave: dc.subjectRenal insufficiency-
Palavras-chave: dc.subjectGeneralized additive model for location, scale and shape (GAMLSS)-
Título: dc.titleUsing the Box-Cox family of distributions to model censored data-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.