Higher-Order Statistics and support vector machines applied to fault detection in a cantilever beam

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBorges, Fernando Elias de Melo-
Autor(es): dc.creatorPinto, Andrey Willian Marques-
Autor(es): dc.creatorPereira, Daniel Augusto-
Autor(es): dc.creatorBarbosa, Bruno Henrique Groenner-
Autor(es): dc.creatorMagalhães, Ricardo Rodrigues-
Autor(es): dc.creatorFerreira, Danton Diego-
Autor(es): dc.creatorBarbosa, Tássio Spuri-
Data de aceite: dc.date.accessioned2026-02-09T12:39:30Z-
Data de disponibilização: dc.date.available2026-02-09T12:39:30Z-
Data de envio: dc.date.issued2020-08-14-
Data de envio: dc.date.issued2020-08-14-
Data de envio: dc.date.issued2019-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/42430-
Fonte completa do material: dc.identifierhttp://www.taaeufla.deg.ufla.br/index.php/TAAE/article/view/30-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1165707-
Descrição: dc.descriptionIn this paper, it is proposed a method to detect structural faults or damages using Higher-Order Statistics (HOS). For this, vibration signals were taken from cantilever beams. Such vibrations were generated by a DC motor with varying rotation, generating vibrations at various frequencies. Vibration signals and engine speed control were performed by an Arduino board. After the signal acquisition, parameters are extracted by means of second-, third- and fourthorder cumulants and then the most relevant ones were selected by the Fisher’s Discriminant Ratio (FDR). To fault detection, a Support Vector Machine (SVM) classifier has been designed in its One-Class version, where only oneclass knowledge is required. The results showed a good ability to represent vibration signals via HOS along with a large reduction in dimensionality given using FDR and a good generalization by means of the SVM classifier. Failure detection results showed 100% success rates.-
Idioma: dc.languageen-
Publicador: dc.publisherUniversidade Federal de Lavras-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceTheoretical and Applied Engineering-
Palavras-chave: dc.subjectVibration analysis-
Palavras-chave: dc.subjectStructural health monitoring-
Palavras-chave: dc.subjectOne-Class learning-
Palavras-chave: dc.subjectAnálise de vibração-
Palavras-chave: dc.subjectMonitoramento de integridade estrutural-
Palavras-chave: dc.subjectDetecção de falhas-
Palavras-chave: dc.subjectMáquina de vetores de suporte-
Palavras-chave: dc.subjectFunção discriminante de Fisher-
Título: dc.titleHigher-Order Statistics and support vector machines applied to fault detection in a cantilever beam-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.