
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Nascimento, Moysés | - |
| Autor(es): dc.creator | Sáfadi, Thelma | - |
| Autor(es): dc.creator | Silva, Fabyano Fonseca e | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T12:37:54Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T12:37:54Z | - |
| Data de envio: dc.date.issued | 2020-09-23 | - |
| Data de envio: dc.date.issued | 2020-09-23 | - |
| Data de envio: dc.date.issued | 2011-11 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/43169 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1165183 | - |
| Descrição: dc.description | The objective of this work was to determine the best alternative for the formation of homogeneous groups of gene expression series among the hierarchical clustering (Ward) and optimization (Tocher) methods, and to perform predictions regarding the gene expression of these series from a small number of temporal observations. The data used refer to the expression of genes that act on cell cycle of Saccharomyces cerevisiae, and corresponded to 114 gene expression series, with ten-fold-change values (expression measure) each, over time (0, 15, 30, 45, 60, 75, 90, 105, 120, and 135 min). The parameter estimates of autoregressive models AR(p) were previously adjusted to individual series (from each gene) of microarray time series data and used as variables in the clustering process. Gene expression predictions were made within each formed group from the adjustments in AR(p) model for panel data. The Ward's method was the more suited for the formation of gene groups with homogeneous series. Once these groups are obtained, it is possible to adjust the model AR(2) for panel-data, and successfully predict gene expression at a future time (135 min) from a small number of temporal observations (the nine other fold-change values). | - |
| Descrição: dc.description | O objetivo deste trabalho foi determinar a melhor alternativa, entre os métodos de agrupamento hierárquico (Ward) e de otimização (Tocher), para a formação de grupos homogêneos de séries de expressão gênica, e realizar previsões quanto à expressão gênica dessas séries, a partir de pequeno número de observações temporais. Os dados utilizados referem-se à expressão de genes que atuam sobre o ciclo celular de Saccharomyces cerevisiae e corresponderam a 114 séries de expressão gênica, cada uma com dez valores de "fold-change" (medida da expressão gênica) ao longo do tempo (0, 15, 30, 45, 60, 75, 90, 105, 120 e 135 min). As estimativas dos parâmetros dos modelos autorregressivos AR(p) foram previamente ajustadas a séries individuais (de cada gene) de dados "microarray time series" e utilizadas, como variáveis, no processo de agrupamento. As previsões da expressão gênica foram feitas dentro de cada grupo formado, a partir dos ajustes no modelo AR(p) para dados em painel. O método de Ward foi o mais apropriado para a formação de grupos de genes com séries homogêneas. Uma vez obtidos esses grupos, é possível ajustar o modelo AR(2) para dados em painel e predizer a expressão gênica em um tempo futuro (135 min), a partir de um pequeno número de observações temporais (os outros nove valores de "fold-change"). | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Secretaria de Pesquisa e Desenvolvimento (SPD) | - |
| Direitos: dc.rights | acesso aberto | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | - |
| ???dc.source???: dc.source | Pesquisa Agropecuária Brasileira (PAB) | - |
| Palavras-chave: dc.subject | Bioinformática | - |
| Palavras-chave: dc.subject | Método de Tocher | - |
| Palavras-chave: dc.subject | Método de Ward | - |
| Palavras-chave: dc.subject | Microarranjo | - |
| Palavras-chave: dc.subject | Modelo autorregressivo | - |
| Palavras-chave: dc.subject | Série temporal | - |
| Palavras-chave: dc.subject | Bioinformatics | - |
| Palavras-chave: dc.subject | Tocher's method | - |
| Palavras-chave: dc.subject | Ward's method | - |
| Palavras-chave: dc.subject | Microarray | - |
| Palavras-chave: dc.subject | Autoregressive model | - |
| Palavras-chave: dc.subject | Time series | - |
| Título: dc.title | Aplicação da análise de agrupamento de dados de expressão gênica temporal a dados em painel | - |
| Título: dc.title | Application of cluster analysis of temporal gene expression data to panel data | - |
| Tipo de arquivo: dc.type | Artigo | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: