A statistical signal processing approach to islanding detection

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorLima, Robson Rosserrani de-
Autor(es): dc.creatorCerqueira, Augusto Santiago-
Autor(es): dc.creatorRibeiro, Paulo Fernando-
Autor(es): dc.creatorFerreira, Danton Diego-
Data de aceite: dc.date.accessioned2026-02-09T12:32:34Z-
Data de disponibilização: dc.date.available2026-02-09T12:32:34Z-
Data de envio: dc.date.issued2023-05-16-
Data de envio: dc.date.issued2023-05-16-
Data de envio: dc.date.issued2022-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/56802-
Fonte completa do material: dc.identifierhttps://sbic.org.br/lnlm/publicacoes/vol21-no1/vol21-no1-art5/-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1163390-
Descrição: dc.descriptionThe integration of distributed generation (DG) sources in the electric energy systems may bring new problems that need attention, one of these problems is the occurrence of unintentional islanding. Islanding is a condition in which part of the distribution network is disconnected from the system, and consumer units are still powered by one or more DGs, which can cause damage to equipment and pose risks to the safety of technicians. This paper shows an islanding detection method (IDM) in Power Systems with DG based on statistical signal processing. We used a MathWorks Simulink model of a grid-connected 250 kW photovoltaic (PV) array to simulate the behavior of the three-phase voltage signal in the point of common coupling (PCC) under the nominal operation, islanding condition, and fault condition using different load compositions. Principal Component Analysis (PCA) was used to extract the transitory events from the voltage signals, and then we used second-, third-, and fourthorder cumulants to generate features and the best ones were selected using the Fisher’s Discriminant Ratio (FDR). A Radial Basis Function Network (RBFN) makes the classification of the events. We found that, for this setup, we can achieve detection rates of 99% for both islanding condition detection and fault occurrence classification, no matter the power mismatch between the load and the DG.-
Idioma: dc.languageen-
Publicador: dc.publisherBrazilian Society on Computational Intelligence-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceLearning and NonLinear Models-
Palavras-chave: dc.subjectIslanding detection-
Palavras-chave: dc.subjectDistributed generation-
Palavras-chave: dc.subjectPrincipal component analysis-
Palavras-chave: dc.subjectHigh order statistics-
Palavras-chave: dc.subjectCumulants-
Palavras-chave: dc.subjectRadial basis function network-
Palavras-chave: dc.subjectPhotovoltaic array-
Palavras-chave: dc.subjectFisher’s discriminant ratio-
Título: dc.titleA statistical signal processing approach to islanding detection-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.