
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Esmin, Ahmed Ali Abdalla | - |
| Autor(es): dc.contributor | Oliveira, Marcelo Silva de | - |
| Autor(es): dc.contributor | Bermejo, Paulo Henrique de Souza | - |
| Autor(es): dc.contributor | Lacerda, Wilian Soares | - |
| Autor(es): dc.creator | Coelho, Éden de Oliveira Pinto | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T12:30:56Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T12:30:56Z | - |
| Data de envio: dc.date.issued | 2015-04-24 | - |
| Data de envio: dc.date.issued | 2015-04-24 | - |
| Data de envio: dc.date.issued | 2015-04-23 | - |
| Data de envio: dc.date.issued | 2007-08-08 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/5425 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1162819 | - |
| Descrição: dc.description | The information has been having a fundamental role on companies' growth, development and sucess. The making-decision supporting systems, available at these companies, make the work of collecting, treating and analyzing. There is also a tendency in these companies to increase their data amount. However, there is an inverse relation between the data amount and the need of a strategic knowledge, that is, although the resumed and meaningful information to making- decision are fewer, generally they are not available and demand to be extracted from big data amounts. KDD - Knowledge Discovery in Databases refers to the extration of knowledge from a big database amounts. Data Mining refers to a especific phase of this process. This study demostrates a practical application of KDD Process to the database of 2006 UFLA's Entrance Examination or Selective Process. Coherently to WEKA research tool - Weikato Enviroment for Knowledge Analysis, the Data Visual Mining, Decision Tree, Association Rules and Neural Networks were applied. The results can be used to biuld up the candidates profile, in order to extract important information that offer support to this institution on the making-decision process. | - |
| Descrição: dc.description | Banco de dados | - |
| Descrição: dc.description | A informação vem desempenhando um papel fundamental no desenvolvimento e sucesso das grandes organizações. Os sistemas de suporte a decisão tornam mais confiáveis as tarefas de coletar, tratar, interpretar e utilizar informações. As empresas tendem, com o passar do tempo, a aumentar consideravelmente seu volume de dados. Entretanto, há uma relação inversa entre o volume de dados existentes e a necessidade de conhecimento estratégico, ou seja, apesar das informações resumidas e significativas para tomada de decisão seja de volume menor, geralmente elas não estão disponíveis e exigem que sejam extraídas a partir de grande quantidade de dados. Descoberta de Conhecimento em Banco de Dados (KDD – Knowledge Discovery in Databases) refere-se ao processo de extração de conhecimento a partir de grande base de dados. Mineração de Dados (ou Data Mining), refere-se a uma determinada etapa deste processo. Este trabalho apresenta uma aplicação prática do processo de KDD na base de dados sobre os candidatos ao processo seletivo dos vestibulares ocorridos no ano de 2006 da UFLA. Neste trabalho, utilizando-se de uma ferramenta chamada WEKA (Weikato Enviroment for Knowledge Analysis), foram aplicadas as técnicas de Mineração Visual de Dados, Árvore de Decisão, Regras de Associação e Redes Neurais. Os resultados obtidos poderão ser usados para traçar perfis dos candidatos ao processo seletivo do vestibular da UFLA, a fim de levantar informações relevantes que tragam subsídios para as instituições de ensino em geral na tomada de decisões. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Direitos: dc.rights | acesso aberto | - |
| Palavras-chave: dc.subject | Descoberta de conhecimento em banco de dados | - |
| Palavras-chave: dc.subject | Mineração de dados | - |
| Palavras-chave: dc.subject | Knowledge discovery in databeses | - |
| Palavras-chave: dc.subject | Data mining | - |
| Título: dc.title | Descoberta de conhecimento sobre o processo seletivo da ufla | - |
| Tipo de arquivo: dc.type | TCC | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: