
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Andrade, Renata | - |
| Autor(es): dc.creator | Faria, Wilson Missina | - |
| Autor(es): dc.creator | Silva, Sérgio Henrique Godinho | - |
| Autor(es): dc.creator | Chakraborty, Somsubhra | - |
| Autor(es): dc.creator | Weindorf, David C. | - |
| Autor(es): dc.creator | Mesquita, Luiz Felipe | - |
| Autor(es): dc.creator | Guilherme, Luiz Roberto Guimarães | - |
| Autor(es): dc.creator | Curi, Nilton | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T12:25:45Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T12:25:45Z | - |
| Data de envio: dc.date.issued | 2020-09-11 | - |
| Data de envio: dc.date.issued | 2020-09-11 | - |
| Data de envio: dc.date.issued | 2019-12-31 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/43013 | - |
| Fonte completa do material: dc.identifier | https://www.sciencedirect.com/science/article/abs/pii/S0016706119315198#! | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1161130 | - |
| Descrição: dc.description | Traditional methods of soil chemical analysis are time consuming, costly, and generate chemical waste. Proximal sensors, such as portable X-ray fluorescence (pXRF) spectrometry, may help to overcome these issues since they have been shown to produce accurate predictions of many soil properties. However, such processes need to be further investigated in Brazilian soils. This work aimed to assess the influence of soil management and mineralogy on elemental composition of soils and predict exchangeable Al3+, Ca2+, Mg2+, and available K+, and P contents from pXRF data alone and associated with soil texture through machine learning algorithms [stepwise generalized linear models (SGLM), and random forest (RF)] in soils of the Brazilian Coastal Plains (BCP). A total of 285 soil samples were collected from the A (n = 123) and B (n = 162) horizons and subjected to laboratory analyses and pXRF scans. Samples were randomly separated into 70% for modeling and 30% for validation. Soil mineralogy and management mainly influenced Al, and Ca and K total content, respectively. In general, the inclusion of the auxiliary input data of soil texture did not change the predictive power of the models. The best results highlight a considerable promise of pXRF technique for rapidly assessing exchangeable Ca2+ (RMSE = 176.3 mg kg−1, R2 = 0.71), Mg2+ (37.7 mg kg−1, 0.60), and available K+ (27.46 mg kg−1, 0.67). The algorithms could not generate reliable models to predict exchangeable Al3+ (30.6 mg kg−1, 0.47) and available P (19.9 mg kg−1, 0.14). In sum, pXRF can be used to reasonably predict soil fertility properties in the BCP soils. Further studies may extend predictions to other soil properties. | - |
| Idioma: dc.language | en | - |
| Publicador: dc.publisher | Elsevier | - |
| Direitos: dc.rights | restrictAccess | - |
| ???dc.source???: dc.source | Geoderma | - |
| Palavras-chave: dc.subject | Aprendizagem de máquina | - |
| Palavras-chave: dc.subject | Espectrometria de fluorescência de raios-X portátil (pXRF) | - |
| Palavras-chave: dc.subject | Mapeamento digital do solo | - |
| Palavras-chave: dc.subject | Machine learning | - |
| Palavras-chave: dc.subject | Digital soil mapping | - |
| Palavras-chave: dc.subject | Kaolinitic soils | - |
| Palavras-chave: dc.subject | Proximal sensors | - |
| Palavras-chave: dc.subject | Solos cauliníticos | - |
| Palavras-chave: dc.subject | Sensores proximais | - |
| Título: dc.title | Prediction of soil fertility via portable X-ray fluorescence (pXRF) spectrometry and soil texture in the Brazilian Coastal Plains | - |
| Tipo de arquivo: dc.type | Artigo | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: