A knowledge-based recommendation system that includes sentiment analysis and deep learning

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorRosa, Renata L.-
Autor(es): dc.creatorSchwartz, Gisele M.-
Autor(es): dc.creatorRuggiero, Wilson V.-
Autor(es): dc.creatorRodríguez, Demóstenes Z.-
Data de aceite: dc.date.accessioned2026-02-09T12:21:57Z-
Data de disponibilização: dc.date.available2026-02-09T12:21:57Z-
Data de envio: dc.date.issued2019-03-22-
Data de envio: dc.date.issued2019-03-22-
Data de envio: dc.date.issued2018-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/33275-
Fonte completa do material: dc.identifierhttps://ieeexplore.ieee.org/document/8445585-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1159825-
Descrição: dc.descriptionOnline social networks (OSN) provide relevant information on users' opinion about different themes. Thus, applications, such as monitoring and recommendation systems (RS) can collect and analyze this data. This paper presents a Knowledge-Based Recommendation System (KBRS), which includes an emotional health monitoring system to detect users with potential psychological disturbances, specifically, depression and stress. Depending on the monitoring results, the KBRS, based on ontologies and sentiment analysis, is activated to send happy, calm, relaxing or motivational messages to users with psychological disturbances. Also, the solution includes a mechanism to send warning messages to authorized persons, in case a depression disturbance is detected by the monitoring system. The detection of depressive and stressful sentence is performed through a Convolutional Neural Network (CNN) and a Bi-directional Long Short-Term Memory (BLSTM) - Recurrent Neural Networks (RNN); the proposed method reached an accuracy of 0.89 and 0.90 to detect depressed and stressed users, respectively. Experimental results show that the proposed KBRS reached a rating of 94% of very satisfied users, as opposed to 69% reached by a RS without the use of either a sentiment metric and ontologies. Additionally, subjective test results demonstrated that the proposed solution consumes low memory, processing and energy from current mobile electronic devices.-
Idioma: dc.languageen-
Publicador: dc.publisherIEEE Xplore-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceIEEE Transactions on Industrial Informatics-
Palavras-chave: dc.subjectSentiment analysis-
Palavras-chave: dc.subjectKnowledge personalization and customization-
Palavras-chave: dc.subjectRecommendation system-
Palavras-chave: dc.subjectSocial networks-
Palavras-chave: dc.subjectDeep learning-
Palavras-chave: dc.subjectAnálise de sentimentos-
Palavras-chave: dc.subjectPersonalização e personalização de conhecimento-
Palavras-chave: dc.subjectSistema de recomendação-
Palavras-chave: dc.subjectRedes sociais-
Título: dc.titleA knowledge-based recommendation system that includes sentiment analysis and deep learning-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.