
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Ferreira, Danton Diego | - |
| Autor(es): dc.contributor | Ferreira, Danton Diego | - |
| Autor(es): dc.contributor | Barbosa, Bruno Henrique Groenner | - |
| Autor(es): dc.contributor | Rabelo, Geovanni Francisco | - |
| Autor(es): dc.contributor | Tofoli, Fernando Lessa | - |
| Autor(es): dc.creator | Guedes, Juan Diego Silva | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T12:18:25Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T12:18:25Z | - |
| Data de envio: dc.date.issued | 2015-12-14 | - |
| Data de envio: dc.date.issued | 2015-12-14 | - |
| Data de envio: dc.date.issued | 2015-12-14 | - |
| Data de envio: dc.date.issued | 2013-08-19 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/10687 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1158645 | - |
| Descrição: dc.description | Non-invasive appliance load monitoring is a modern technique that has several applications bringing benefits for both consumers and electrical utilities. These techniques allow bill discrimination and detection of energy losses. It also provides valuable information for energy programs, and creates a better characterization of the loads. This work presents a new approach for non-invasive residential electrical load monitoring. The innovation of the proposed approach is the use of cumulants of second and fourth order extracted from the electric current signal of the residential electrical loads as signatures of these loads. In order to reduce the dimension problem, two methods for feature selection were employed: a) Fisher’s Linear Discriminant and Fisher’s Linear Discriminant combined to Genetic Algorithms. The selected features are presented to a classifier, which identifies the residential electric load class of the processed signal. Two different classifiers were used: a) Artificial Neural Networks and b) Decision Tree. Results from these approaches were comparatively presented. This work has considered eleven different classes of residential electrical loads. Results were obtrained out from experimental electric signals and a high performance is achieved. | - |
| Descrição: dc.description | Sistemas não invasivos de medição de cargas elétricas possuem aplicações variadas e apresentam benefícios tanto para consumidores quanto para concessionárias de distribuição de energia elétrica. Esses sistemas permitem a discriminação da fatura e a detecção de furto de energia elétrica. Podem fornecer, ainda, informações valiosas para programas de eficientização energética, além de possibilitar uma melhor caracterização das cargas atendidas do ponto de vista temporal. Este trabalho apresenta uma nova metodologia para o monitoramento não invasivo de cargas elétricas residenciais. A metodologia propõe o uso de cumulantes de segunda e quarta ordem extraídos do sinal de corrente elétrica das cargas elétricas residenciais, durante o acionamento. Os cumulantes representam as assinaturas de tais cargas a fim de identificá-las quando acionadas. Em seguida, a seleção dos cumulantes mais significativos é feita utilizando-se duas abordagens: a) através do discriminante linear de Fisher e b) através do discriminante linear de Fisher seguido de Algoritmos Genéticos. Os cumulantes selecionados são então apresentados a um classificador que identifica a carga elétrica que foi acionada. Dois classificadores foram propostos: a) baseado em Redes Neurais Artificiais e b) baseado em Árvores de Decisão. Os resultados dessas abordagens são apresentados de forma comparativa apontando as vantagens e desvantagens de cada uma. Neste trabalho foram consideradas onze classes diferentes de cargas elétricas residenciais. Os sinais elétricos foram adquiridos experimentalmente. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Universidade Federal de Lavras | - |
| Publicador: dc.publisher | Programa de Pós-Graduação em Engenharia de Sistemas e Automação | - |
| Publicador: dc.publisher | UFLA | - |
| Publicador: dc.publisher | brasil | - |
| Publicador: dc.publisher | Departamento de Engenharia | - |
| Direitos: dc.rights | acesso aberto | - |
| Palavras-chave: dc.subject | Monitoramento não invasivo | - |
| Palavras-chave: dc.subject | Carga elétrica | - |
| Palavras-chave: dc.subject | Smart grid | - |
| Palavras-chave: dc.subject | Estatísticas de ordem superior | - |
| Palavras-chave: dc.subject | Non-invasive monitoring | - |
| Palavras-chave: dc.subject | Electrical load | - |
| Palavras-chave: dc.subject | Smart grid | - |
| Palavras-chave: dc.subject | Higher order statistical | - |
| Palavras-chave: dc.subject | Engenharia Elétrica | - |
| Título: dc.title | Método de monitoramento não invasivo de cargas elétricas residenciais | - |
| Tipo de arquivo: dc.type | dissertação | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: