Region growing for segmenting green microalgae images

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBorges, Vinicius R. P.-
Autor(es): dc.creatorOliveira, Maria Cristina F. de-
Autor(es): dc.creatorSilva, Tha ıs Garcia-
Autor(es): dc.creatorVieira, Armando Augusto Henriques-
Autor(es): dc.creatorHamann, Bernd-
Data de aceite: dc.date.accessioned2026-02-09T12:16:04Z-
Data de disponibilização: dc.date.available2026-02-09T12:16:04Z-
Data de envio: dc.date.issued2019-07-12-
Data de envio: dc.date.issued2019-07-12-
Data de envio: dc.date.issued2018-01-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/35275-
Fonte completa do material: dc.identifierhttps://dl.acm.org/citation.cfm?id=3186447-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1157871-
Descrição: dc.descriptionWe describe a specialized methodology for segmenting 2D microscopy digital images of freshwater green microalgae. The goal is to obtain representative algae shapes to extract morphological features to be employed in a posterior step of taxonomical classification of the species. The proposed methodology relies on the seeded region growing principle and on a fine-tuned filtering preprocessing stage to smooth the input image. A contrast enhancement process then takes place to highlight algae regions on a binary pre-segmentation image. This binary image is also employed to determine where to place the seed points and to estimate the statistical probability distributions that characterize the target regions, i.e., the algae areas and the background, respectively. These preliminary stages produce the required information to set the homogeneity criterion for region growing. We evaluate the proposed methodology by comparing its resulting segmentations with a set of corresponding ground-truth segmentations (provided by an expert biologist) and also with segmentations obtained with existing strategies. The experimental results show that our solution achieves highly accurate segmentation rates with greater efficiency, as compared with the performance of standard segmentation approaches and with an alternative previous solution, based on level-sets, also specialized to handle this particular problem.-
Idioma: dc.languageen-
Publicador: dc.publisherAssociation for Computing Machinery-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceTransactions on Computational Biology and Bioinformatics-
Palavras-chave: dc.subjectSeeded region growing-
Palavras-chave: dc.subjectFreshwater green microalgae-
Palavras-chave: dc.subjectImage segmentation-
Palavras-chave: dc.subjectGaussian distribution-
Palavras-chave: dc.subjectCrescimento da região semeada-
Palavras-chave: dc.subjectMicroalgas verdes de água doce-
Palavras-chave: dc.subjectSegmentação de imagens-
Palavras-chave: dc.subjectDistribuição gaussiana-
Título: dc.titleRegion growing for segmenting green microalgae images-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.