Artificial neural networks for prediction of physiological and productive variables of broilers

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorAbreu, Lucas Henrique Pedrozo-
Autor(es): dc.creatorYanagi Junior, Tadayuki-
Autor(es): dc.creatorHernández Julio, Yamid Fabián-
Autor(es): dc.creatorFerraz, Patrícia Ferreira Ponciano-
Data de aceite: dc.date.accessioned2026-02-09T12:09:17Z-
Data de disponibilização: dc.date.available2026-02-09T12:09:17Z-
Data de envio: dc.date.issued2020-09-02-
Data de envio: dc.date.issued2020-09-02-
Data de envio: dc.date.issued2020-01-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/42817-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1155495-
Descrição: dc.descriptionDue to a number of factors involving the thermal environment of a broiler cutting installation and its interaction with the physiological and productive responses of birds, artificial intelligence has been shown to be an interesting methodology to assist in the decision-making process. For this reason, the main aim of this work was to develop an artificial neural network (ANN) to predict feed conversion (FC), water consumption (Cwater), and cloacal temperature (tclo) of broilers submitted to different air dry-bulb temperatures (24, 27, 30, and 33°C) and durations (1, 2, 3, and 4 days) of thermal stress in the second week of the production cycle. Relative humidity and wind speed were fixed at 60% and 0.2 ms−1, respectively. The experimental data were used for the development of an ANN with supervised training using the Levenberg-Marquardt backpropagation algorithm. The ANN consisted of three input layers one hidden, and three output with sigmoidal tangent transfer functions with values between −1 and 1. The developed ANN has adequate predictive capacity, with coefficients of determination (R2) for tclo, FC, and Cwater of 0.79, 0.87, and 0.97, respectively. In this way, the proposed ANN can be used as a support for decision-making to trigger poultry heating systems for broiler breeding.-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherAssociação Brasileira de Engenharia Agrícola-
Direitos: dc.rightsacesso aberto-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
Direitos: dc.rightshttp://creativecommons.org/licenses/by/4.0/-
???dc.source???: dc.sourceEngenharia Agrícola-
Palavras-chave: dc.subjectPoultry-
Palavras-chave: dc.subjectThermal stress-
Palavras-chave: dc.subjectArtificial intelligence-
Palavras-chave: dc.subjectFrango de corte-
Palavras-chave: dc.subjectEstresse térmico-
Palavras-chave: dc.subjectInteligência artificial-
Palavras-chave: dc.subjectRedes neurais artificiais-
Título: dc.titleArtificial neural networks for prediction of physiological and productive variables of broilers-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.