Análise Bayesiana no estudo do tempo de retorno das precipitações pluviais máximas em Jaboticabal (SP)

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBeijo, Luiz Alberto-
Autor(es): dc.creatorVivanco, Mário Javier Ferrua-
Autor(es): dc.creatorMuniz, Joel Augusto-
Data de aceite: dc.date.accessioned2026-02-09T12:03:15Z-
Data de disponibilização: dc.date.available2026-02-09T12:03:15Z-
Data de envio: dc.date.issued2009-02-01-
Data de envio: dc.date.issued2015-04-30-
Data de envio: dc.date.issued2015-04-30-
Data de envio: dc.date.issued2015-04-30-
Fonte completa do material: dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542009000100036-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/6896-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1153312-
Descrição: dc.descriptionHistorical maximum rainfall data are used to forecast extreme rainfall, which is important to elaborate agricultural and hydraulic engineering projects. Generalized Extreme Value Distribution (GEV) has been applied in such type of studies. Since those values are extracted from the upper (or lower) tail of the original distribution, a scarce amount of data is obtained in most cases, which may be a problem acquiring reliable estimates about some measure of interest. An alternative to overcome this potential problem would be the use of information available from experts in the area. Therefore, this paper intended to analyze the application of the Bayesian Inference using a priori distribution based on extreme quantiles, which facilitates the incorporation of the information supplied by the experts in order to determine the punctual and the 95% upper limit estimates of the probable maximum precipitation for return periods of 10 and 20 years, yearly and monthly in Jaboticabal, São Paulo State, Brazil. Markov Chain Monte Carlo (MCMC) methods were used to a posterior inference of each parameter. Bayesian inference yielded more suitable and accurate results in the estimation of the parameters of the GEV distribution as well as in the determination of the values of the probable maximum precipitation estimates for Jaboticabal. It turned out as an interesting way of incorporating prior knowledge to the study of extreme data.-
Descrição: dc.descriptionDados históricos de precipitação máxima são utilizados para realizar previsões de chuvas extremas, cujo conhecimento é de grande importância na elaboração de projetos agrícolas e de engenharia hidráulica. A distribuição generalizada de valores extremos (GEV) tem sido aplicada com freqüência nesses tipos de estudos, porém, algumas dificuldades na obtenção de estimativas confiáveis sobre alguma medida dos dados têm ocorrido devido ao fato de que, na maioria das situações, tem-se uma quantidade escassa de dados. Uma alternativa para obter melhorias na qualidade das estimativas seria utilizar informações dos especialistas de determinada área em estudo. Sendo assim, objetiva-se neste trabalho analisar a aplicação da Inferência Bayesiana com uma distribuição a priori baseada em quantis extremos, que facilite a incorporação dos conhecimentos fornecidos por especialistas, para obter as estimativas de precipitação máxima para os tempos de retorno de 10 e 20 anos e seus respectivos limites superiores de 95%, para o período anual e para os meses da estação chuvosa em Jaboticabal (SP). A técnica Monte Carlo, via Cadeias de Markov (MCMC), foi empregada para inferência a posteriori de cada parâmetro. A metodologia Bayesiana apresentou resultados mais acurados e precisos, tanto na estimação dos parâmetros da distribuição GEV, como na obtenção dos valores de precipitação máxima provável para a região de Jaboticabal, apresentando-se como uma boa alternativa na incorporação de conhecimentos a priori no estudo de dados extremos.-
Formato: dc.formattext/html-
Publicador: dc.publisherEditora da Universidade Federal de Lavras-
???dc.source???: dc.sourceCiência e Agrotecnologia v.33 n.1 2009-
Palavras-chave: dc.subjectInferência bayesiana-
Palavras-chave: dc.subjectDistribuição a priori-
Palavras-chave: dc.subjectConhecimento a priori-
Palavras-chave: dc.subjectQuantis extremos-
Palavras-chave: dc.subjectTécnica Monte Carlo via Cadeias de Markov-
Palavras-chave: dc.subjectPrecipitação pluvial máxima-
Palavras-chave: dc.subjectBayesian Inference-
Palavras-chave: dc.subjectMaximum rainfall-
Palavras-chave: dc.subjectExtreme quantiles Markov Chain Monte Carlo method-
Palavras-chave: dc.subjectPrior knowledge-
Palavras-chave: dc.subjectPrior distribution-
Título: dc.titleAnálise Bayesiana no estudo do tempo de retorno das precipitações pluviais máximas em Jaboticabal (SP)-
Título: dc.titleBayesian analysis for estimating the return period of maximum precipitation at Jaboticabal São Paulo state, Brazil-
Tipo de arquivo: dc.typejournal article-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.