
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Fernandes Filho, Claudio Carlos | - |
| Autor(es): dc.creator | Andrade, Mario Henrique Murad Leite | - |
| Autor(es): dc.creator | Nunes, José Airton Rodrigues | - |
| Autor(es): dc.creator | Jarquin, Diego Hernandez | - |
| Autor(es): dc.creator | Rios, Esteban Fernando | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T12:00:13Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T12:00:13Z | - |
| Data de envio: dc.date.issued | 2023-06-05 | - |
| Data de envio: dc.date.issued | 2023-06-05 | - |
| Data de envio: dc.date.issued | 2022 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/56934 | - |
| Fonte completa do material: dc.identifier | https://acsess.onlinelibrary.wiley.com/doi/full/10.1002/tpg2.20306 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1152219 | - |
| Descrição: dc.description | Breeding for dry matter yield and persistence in alfalfa (Medicago sativa L.) can take several years as these traits must be evaluated under multiple harvests. Therefore, genotype-by-harvest interaction should be incorporated into genomic prediction models to explore genotypes’ adaptability and stability. In this study, we investigated how enviromics could help to predict the genotypic performance under multiharvest alfalfa breeding trials by evaluating 177 families across 11 harvests under four cross-validation scenarios. All scenarios were analyzed using six models in a Bayesian mixed model framework. Our results demonstrate that models accounting to the enviromics information led to an increase of genetic variance and a decrease in the error variance, indicating better biological explanation when the enviromic information was incorporated. Furthermore, models that accounted for enviromic data led to higher predictive ability (PA) in a reduced number of harvests used in the training data set. The best enviromic models (M2 and M3) outperformed the base model (GBLUP model—M0) for predicting adaptability and persistence across all cross-validation scenarios. Incorporating environmental covariates also provided higher PA for persistence compared with the base model, as predictions increased from 0 to 0.16, 0.20, 0.56, and 0.46 for CV00, CV1, CV0, and CV2. The results also demonstrate that GBLUP without enviromics term has low power to predict persistence, thus the adoption of enviromics is a cheap and efficient alternative to increase accuracy and biological meaning. | - |
| Idioma: dc.language | en | - |
| Publicador: dc.publisher | Wiley | - |
| Direitos: dc.rights | restrictAccess | - |
| ???dc.source???: dc.source | The Plant Genome | - |
| Palavras-chave: dc.subject | Alfalfa breeding trials | - |
| Palavras-chave: dc.subject | Medicago sativa L. | - |
| Título: dc.title | Genomic prediction for complex traits across multiples harvests in alfalfa ( L.) is enhanced by enviromics | - |
| Tipo de arquivo: dc.type | Artigo | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: