Real-time voltage sag detection and classification for power quality diagnostics

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorNagata, Erick Akio-
Autor(es): dc.creatorFerreira, Danton Diego-
Autor(es): dc.creatorBollen, Math H. J.-
Autor(es): dc.creatorBarbosa, Bruno H. G.-
Autor(es): dc.creatorRibeiro, Eduardo G.-
Autor(es): dc.creatorDuque, Carlos Augusto-
Autor(es): dc.creatorRibeiro, Paulo Fernando-
Data de aceite: dc.date.accessioned2026-02-09T11:54:03Z-
Data de disponibilização: dc.date.available2026-02-09T11:54:03Z-
Data de envio: dc.date.issued2020-08-14-
Data de envio: dc.date.issued2020-08-14-
Data de envio: dc.date.issued2020-10-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/42431-
Fonte completa do material: dc.identifierhttps://doi.org/10.1016/j.measurement.2020.108097-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1149934-
Descrição: dc.descriptionThis work proposes an innovative approach to detect, segment and classify voltage sags according to their causes. To detect and segment, Independent Component Analysis is used, with the advantage of being fast and with low computational effort in the operational stage, once it uses only 1/8 cycle of the fundamental component. For classification purposes, Higher-Order Statistics are used for feature extraction and the classifiers are based on Neural Networks and Support Vector Machines. It was tested signal windows of 1, 1/2, 1/4 and 1/8 cycle. For both detection/segmentation design and feature selection, it was used the metaheuristics Teaching-Learning-Based Optimization. Encouraging results were achieved for the simulated signals. In addition, real signals were used to evaluate the detection and segmentation method and good results were achieved in which a detection error rate of 0.86% was achieved.-
Idioma: dc.languageen-
Publicador: dc.publisherElsevier-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceMeasurement-
Palavras-chave: dc.subjectPower quality-
Palavras-chave: dc.subjectVoltage sag segmentation-
Palavras-chave: dc.subjectVoltage sag classification-
Palavras-chave: dc.subjectDistributed generation-
Palavras-chave: dc.subjectEnergia - Qualidade-
Palavras-chave: dc.subjectQueda de tensão - Segmentação-
Palavras-chave: dc.subjectQueda de tensão - Classificação-
Palavras-chave: dc.subjectGeração distribuída de energia-
Título: dc.titleReal-time voltage sag detection and classification for power quality diagnostics-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.