Influence of changes in 2D chemical structure drawings and image formats on the prediction of biological properties using MIA-QSAR

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorGoodarzi, Mohammad-
Autor(es): dc.creatorFreitas, Matheus P.-
Autor(es): dc.creatorFerreira, Eric B.-
Data de aceite: dc.date.accessioned2026-02-09T11:49:09Z-
Data de disponibilização: dc.date.available2026-02-09T11:49:09Z-
Data de envio: dc.date.issued2020-06-14-
Data de envio: dc.date.issued2020-06-14-
Data de envio: dc.date.issued2009-04-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/41419-
Fonte completa do material: dc.identifierhttps://onlinelibrary.wiley.com/doi/abs/10.1002/qsar.200810146-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1148138-
Descrição: dc.descriptionMultivariate Image Analysis Applied to Quantitative Structure–Activity Relationships (MIA‐QSAR) has been recently implemented as a method to model and predict biological activities of drug‐like compounds. This method is based on the treatment of 2‐D chemical structures, which can be built using specific packages for chemical drawing. These chemical structures correlate with the corresponding bioactivities through descriptors, which are pixels (binaries) of the 2‐D images; the variable moiety of chemical structures (substituent groups) explains the variance in the bioactivities column vector of a series of compounds. Thus, the way in which chemical structures are drawn (font type and size, representation of chemical groups, format in which images are saved) should influence the results of prediction. This work reports the statistics of prediction for a case study, a series of anti‐HIV compounds, and reveals that the results of prediction is independent of the way in which molecules are drawn.-
Idioma: dc.languageen-
Publicador: dc.publisherWiley-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceQSAR & Combinatorial Science (QSC)-
Palavras-chave: dc.subjectAnti‐HIV‐1 compounds-
Palavras-chave: dc.subject2‐D image-
Palavras-chave: dc.subjectImage format-
Palavras-chave: dc.subjectMIA‐QSAR-
Palavras-chave: dc.subjectPLS regression-
Palavras-chave: dc.subjectMultivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR)-
Palavras-chave: dc.subjectPartial least squares regression-
Título: dc.titleInfluence of changes in 2D chemical structure drawings and image formats on the prediction of biological properties using MIA-QSAR-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.