
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.creator | Magalhães, Hanna Sérgia Sousa de | - |
| Autor(es): dc.creator | Magalhães, Ricardo Rodrigues | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T11:48:47Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T11:48:47Z | - |
| Data de envio: dc.date.issued | 2019-02-25 | - |
| Data de envio: dc.date.issued | 2019-02-25 | - |
| Data de envio: dc.date.issued | 2017-11 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/32994 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1148015 | - |
| Descrição: dc.description | Particle Swarm Optimization (PSO) is an artificial intelligence technique (AI) that can be used to find approximate solutions to numerical problems of maximization and minimization. In this study, it was used a PSO algorithm to compare displacements from human cornea sample subjected to internal pressure of 45 mmHg with Results of numerical simulations were provided which identified optimized values for hyperelastic properties of the cornea (µ and α). By means of the results from numerical simulations via inverse analysis by the Finite Element Method (FEM), in conjunction with the PSO algorithm, optimized values of µ = 0.047 and α = 106.7 were found. When compared with optimized results from commercial software, errors around 0.15% were found. Results showed that, varying the values of particle inertia coefficients in the PSO algorithm, simulated displacements have improved when compared to experimental data. This demonstrates the potential use of PSO algorithm in conjunction with the FEM inverse analysis for hyperelastic materials characterization, using simplified geometrical models | - |
| Descrição: dc.description | Otimização por Enxame de Partículas (PSO) é uma técnica de inteligência artificial (AI), que pode ser usada para encontrar soluções aproximadas para problemas numéricos de maximização e minimização extremamente difíceis. Neste trabalho, utilizou-se um algoritmo PSO para comparar os deslocamentos sofridos por uma amostra de córnea humana submetida à uma pressão interna de 45 mmHg com resultados de simulações numéricas e identificar valores otimizados para propriedades hiperelásticas da córnea (µ e α). Por meio dos resultados das simulações via análise inversa pelo Método dos Elementos Finitos (MEF), em conjunto com o algoritmo PSO, foram encontrados valores otimizados de µ = 0,047 e α = 106,7. Quando comparado com resultados otimizados por meio de um software comercial, foram encontrados erros de aproximadamente 0,15%. Por meio dos resultados obtidos, verificou-se ainda que, variando os valores dos coeficientes de inércia da partícula no algoritmo PSO, os resultados podem sofrer ligeira melhoria, o que demonstra potencial uso do PSO em conjunto com análise inversa do MEF para caracterização de materiais hiperelásticos, utilizando modelos geométricos simplificados | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | en | - |
| Publicador: dc.publisher | Sociedade Brasileira de Oftalmologia | - |
| Direitos: dc.rights | acesso aberto | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
| Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
| ???dc.source???: dc.source | Revista Brasileira de Oftalmologia | - |
| Palavras-chave: dc.subject | Particle swarm optimization | - |
| Palavras-chave: dc.subject | Finite element method | - |
| Palavras-chave: dc.subject | Otimização por enxame de partículas | - |
| Palavras-chave: dc.subject | Método dos elementos finitos | - |
| Título: dc.title | Use of simplified geometrical models of a cornea for optimization purposes | - |
| Título: dc.title | Utilização de modelos geométricos simplificados de uma córnea para fins de otimização | - |
| Tipo de arquivo: dc.type | Artigo | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: