Soft constrained autonomous vehicle navigation using gaussian processes and instance segmentation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBarbosa, Bruno H. Groenner-
Autor(es): dc.creatorBhatt, Neel P.-
Autor(es): dc.creatorKhajepour, Amir-
Autor(es): dc.creatorHashemi, Ehsan-
Data de aceite: dc.date.accessioned2026-02-09T11:48:34Z-
Data de disponibilização: dc.date.available2026-02-09T11:48:34Z-
Data de envio: dc.date.issued2022-02-01-
Data de envio: dc.date.issued2022-02-01-
Data de envio: dc.date.issued2020-12-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/49151-
Fonte completa do material: dc.identifierhttps://arxiv.org/abs/2101.06901-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1147936-
Descrição: dc.descriptionThis paper presents a generic feature-based navigation framework for autonomous vehicles using a soft constrained Particle Filter. Selected map features, such as road and landmark locations, and vehicle states are used for designing soft constraints. After obtaining features of mapped landmarks in instance-based segmented images acquired from a monocular camera, vehicle-to-landmark distances are predicted using Gaussian Process Regression (GPR) models in a mixture of experts approach. Both mean and variance outputs of GPR models are used for implementing adaptive constraints. Experimental results confirm that the use of image segmentation features improves the vehicle-to-landmark distance prediction notably, and that the proposed soft constrained approach reliably localizes the vehicle even with reduced number of landmarks and noisy observations.-
Idioma: dc.languageen-
Publicador: dc.publisherCornell University-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceArXiv-
Palavras-chave: dc.subjectMap-based Localization-
Palavras-chave: dc.subjectMonocular Vision-
Palavras-chave: dc.subjectInstance Segmentation-
Palavras-chave: dc.subjectGaussian Process-
Palavras-chave: dc.subjectConstrained Particle Filter-
Palavras-chave: dc.subjectVeículos autônomos-
Palavras-chave: dc.subjectVisão Monocular-
Palavras-chave: dc.subjectSegmentação de instância-
Palavras-chave: dc.subjectProcesso Gaussiano-
Título: dc.titleSoft constrained autonomous vehicle navigation using gaussian processes and instance segmentation-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.