The use of coevolution and the artificial immune system for ensemble learning

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBarbosa, Bruno H. G.-
Autor(es): dc.creatorBui, Lam T.-
Autor(es): dc.creatorAbbass, Hussein A.-
Autor(es): dc.creatorAguirre, Luis A.-
Autor(es): dc.creatorBraga, Antônio P.-
Data de aceite: dc.date.accessioned2026-02-09T11:48:20Z-
Data de disponibilização: dc.date.available2026-02-09T11:48:20Z-
Data de envio: dc.date.issued2017-06-06-
Data de envio: dc.date.issued2017-06-06-
Data de envio: dc.date.issued2011-09-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/13179-
Fonte completa do material: dc.identifierhttps://link.springer.com/article/10.1007/s00500-010-0613-z-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1147844-
Descrição: dc.descriptionThis paper presents two new approaches for constructing an ensemble of neural networks (NN) using coevolution and the artificial immune system (AIS). These approaches are extensions of the CLONal Selection Algorithm for building ENSembles (CLONENS) algorithm. An explicit diversity promotion technique was added to CLONENS and a novel coevolutionary approach to build neural ensembles is introduced, whereby two populations representing the gates and the individual NN are coevolved. The former population is responsible for defining the ensemble size and selecting the members of the ensemble. This population is evolved using the differential evolution algorithm. The latter population supplies the best individuals for building the ensemble, which is evolved by AIS. Results show that it is possible to automatically define the ensemble size being also possible to find smaller ensembles with good generalization performance on the tested benchmark regression problems. More interestingly, the use of the diversity measure during the evolutionary process did not necessarily improve generalization. In this case, diverse ensembles may be found using only implicit diversity promotion techniques.-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceSoft Computing-
Palavras-chave: dc.subjectNeural networks-
Palavras-chave: dc.subjectDifferential evolution-
Palavras-chave: dc.subjectCoevolution-
Palavras-chave: dc.subjectArtificial immune system-
Palavras-chave: dc.subjectRedes neurais-
Palavras-chave: dc.subjectEvolução diferencial-
Palavras-chave: dc.subjectCoevolução-
Palavras-chave: dc.subjectSistema imunológico artificial-
Título: dc.titleThe use of coevolution and the artificial immune system for ensemble learning-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.