
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Correia, Luiz Henrique A. | - |
| Autor(es): dc.contributor | Correia, Luiz Henrique A. | - |
| Autor(es): dc.contributor | Macedo, Daniel Fernandes | - |
| Autor(es): dc.contributor | Lacerda, Wilian Soares | - |
| Autor(es): dc.creator | Marques, Ariel Felipe Ferreira | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T11:45:51Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T11:45:51Z | - |
| Data de envio: dc.date.issued | 2016-06-08 | - |
| Data de envio: dc.date.issued | 2016-06-08 | - |
| Data de envio: dc.date.issued | 2016-06-08 | - |
| Data de envio: dc.date.issued | 2016-04-15 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/11232 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1146936 | - |
| Descrição: dc.description | The increased demand for using the Industrial, Scientific and Medical (ISM) unlicensed frequency spectrum has caused interference problems and lack of resource availability for wireless networks. Cognitive radio (CR) have emerged as an alternative to reduce interference and intelligently use the spectrum. Several protocols were proposed aiming to mitigate these problems, but most have not been implemented in real devices. This work presents an architecture for Intelligent Sensing for Cognitive Radios (ISCRa), and a spectrum decision model (SDM) based on Artificial Neural Networks (ANN), which uses as input a database with local spectrum behavior and a database with primary users information. For comparison, a spectrum decision model based on AHP, which employs advanced techniques in its spectrum decision method was implemented. Another spectrum decision model that considers only a physical parameter for channel classification was also implemented. Spectrum decision models evaluated, as well as ISCRa's architecture were developed in GNU-Radio framework and implemented on real nodes. Evaluation of SDMs considered metrics of: delivery rate, latency (Round Trip Time - RTT) and handoff. Experiments on real nodes showed that ISCRa architecture with ANN based SDM increased packet delivery rate and presented fewer frequency variation (handoff) while maintaining latency. Considering higher bandwidth as application's Quality of Service requirement, ANN-SDM obtained the best results when compared to other SDM for cognitive radio networks (CRN). | - |
| Descrição: dc.description | Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) | - |
| Descrição: dc.description | A grande demanda pela utilização do espectro de frequência livre Industrial, Scientific and Medical (ISM) tem causado problemas de interferência e falta de disponibilidade de recursos para redes sem fio. Os rádios cognitivos (RC) surgiram como alternativa para reduzir interferências e para o aproveitamento inteligente do espectro. Diversos protocolos surgiram com a finalidade de reduzir esses problemas, mas a maioria não foi implementada em dispositivos reais. Este trabalho apresenta a arquitetura Sensoriamento Inteligente para Rádios Cognitivos (SIRCo) e um modelo de decisão do espectro (MDE) baseado em uma Rede Neural Artificial (RNA) que utiliza como entrada uma base de dados com o comportamento do espectro local e uma base de dados com informações referentes aos usuários primários. Para efeito comparativo, foi implementado um modelo de decisão do espectro baseado em AHP, que emprega técnicas de multicritérios em seu método de decisão do espectro. Bem como, foi implementado também um modelo de decisão do espectro que considera somente um parâmetro físico para a classificação do canal. Os modelos de decisão avaliados, assim como a arquitetura SIRCo foram desenvolvidos no framework GNU-Radio e implementados em nós reais. Na avaliação dos MDEs, foram consideradas as métricas: taxa de entrega, latência (Round Trip Time - RTT) e handoff. Experimentos em nós reais mostraram que a arquitetura SIRCo com MDE baseado em RNA possibilitou o aumento da taxa de entrega de pacotes e menor variação de frequência escolhidas (handoff) mantendo-se a latência. Considerado a garantia de maior largura de banda como requisito de aplicação, o MDE-RNA obteve os melhores resultados quando comparado com outros MDE para redes de rádios cognitivos (RRC). | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Universidade Federal de Lavras | - |
| Publicador: dc.publisher | Programa de P os-Gradua c~ao em Ci^encia da Computa c~ao | - |
| Publicador: dc.publisher | UFLA | - |
| Publicador: dc.publisher | brasil | - |
| Publicador: dc.publisher | Departamento de Ciência da Computação | - |
| Direitos: dc.rights | acesso aberto | - |
| Palavras-chave: dc.subject | Rádio Cognitivo | - |
| Palavras-chave: dc.subject | Sensoriamento do espectro | - |
| Palavras-chave: dc.subject | Modelo de decisão do espectro | - |
| Palavras-chave: dc.subject | Rede Neural Articial | - |
| Palavras-chave: dc.subject | Cognitive Radio | - |
| Palavras-chave: dc.subject | Spectrum Management | - |
| Palavras-chave: dc.subject | Articial Neural Network | - |
| Palavras-chave: dc.subject | Spectrum decision model | - |
| Palavras-chave: dc.subject | Ciência da Computação | - |
| Título: dc.title | SIRCo: uma arquitetura para Sensoriamento Inteligente de Rádios Cognitivos | - |
| Título: dc.title | ISCRa: an architecture for Intelligent Sensing for Cognitive Radios | - |
| Tipo de arquivo: dc.type | dissertação | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: