Improvement of MIA-QSAR analysis by using wavelet-pca ranking variable selection and LS-SVM regression: QSAR study of checkpoint kinase WEE1 inhibitors

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorCormanich, Rodrigo A.-
Autor(es): dc.creatorGoodarzi, Mohammad-
Autor(es): dc.creatorFreitas, Matheus P.-
Data de aceite: dc.date.accessioned2026-02-09T11:42:34Z-
Data de disponibilização: dc.date.available2026-02-09T11:42:34Z-
Data de envio: dc.date.issued2020-06-14-
Data de envio: dc.date.issued2020-06-14-
Data de envio: dc.date.issued2009-02-
Fonte completa do material: dc.identifierhttps://repositorio.ufla.br/handle/1/41418-
Fonte completa do material: dc.identifierhttps://onlinelibrary.wiley.com/doi/10.1111/j.1747-0285.2008.00764.x-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1145709-
Descrição: dc.descriptionInhibition of tyrosine kinase enzyme WEE1 is an important step for the treatment of cancer. The bioactivities of a series of WEE1 inhibitors have been previously modeled through comparative molecular field analyses (CoMFA and CoMSIA), but a two‐dimensional image‐based quantitative structure–activity relationship approach has shown to be highly predictive for other compound classes. This method, called multivariate image analysis applied to quantitative structure–activity relationship, was applied here to derive quantitative structure–activity relationship models. Whilst the well‐known bilinear and multilinear partial least squares regressions (PLS and N‐PLS, respectively) correlated multivariate image analysis descriptors with the corresponding dependent variables only reasonably well, the use of wavelet and principal component ranking as variable selection methods, together with least‐squares support vector machine, improved significantly the prediction statistics. These recently implemented mathematical tools, particularly novel in quantitative structure–activity relationship studies, represent an important advance for the development of more predictive quantitative structure–activity relationship models and, consequently, new drugs.-
Idioma: dc.languageen-
Publicador: dc.publisherWiley-
Direitos: dc.rightsrestrictAccess-
???dc.source???: dc.sourceChemical Biology and Drug Design-
Palavras-chave: dc.subjectMIA‐QSAR-
Palavras-chave: dc.subjectRegression methods-
Palavras-chave: dc.subjectVariable selection-
Palavras-chave: dc.subjectWEE1 inhibitors-
Palavras-chave: dc.subjectMultivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR)-
Título: dc.titleImprovement of MIA-QSAR analysis by using wavelet-pca ranking variable selection and LS-SVM regression: QSAR study of checkpoint kinase WEE1 inhibitors-
Tipo de arquivo: dc.typeArtigo-
Aparece nas coleções:Repositório Institucional da Universidade Federal de Lavras (RIUFLA)

Não existem arquivos associados a este item.