
Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
| Metadados | Descrição | Idioma |
|---|---|---|
| Autor(es): dc.contributor | Balestre, Márcio | - |
| Autor(es): dc.contributor | Sáfadi, Thelma | - |
| Autor(es): dc.contributor | Nunes, José Airton Rodrigues | - |
| Autor(es): dc.creator | Romão, Rogério Fernandes | - |
| Data de aceite: dc.date.accessioned | 2026-02-09T11:32:15Z | - |
| Data de disponibilização: dc.date.available | 2026-02-09T11:32:15Z | - |
| Data de envio: dc.date.issued | 2017-03-27 | - |
| Data de envio: dc.date.issued | 2017-03-27 | - |
| Data de envio: dc.date.issued | 2017-03-27 | - |
| Data de envio: dc.date.issued | 2017-02-16 | - |
| Fonte completa do material: dc.identifier | https://repositorio.ufla.br/handle/1/12572 | - |
| Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/capes/1142096 | - |
| Descrição: dc.description | The present work aimed to verify the robutness of the AMMI predictive ability through using several Bayesian and Frequentist approaches, and Analytical Factor (FA) in the study of unbalanced multi-environmental data (MET), using simulated data. To verify the eficiency of these methods, random unbalanced was performed using 10%, 33% and 50% of loss. To evaluate the predictive ability of the missing data in proposed models, the PRESS statistics (prediction error sum square) and the correlations between the observed and predicted values were used, through cross-validation methods. The results showed that inpredictive terms, at the level of 10% of unbalance the Bayesian AMMI models with variance heterogeneity (AMMIB-D) and AMMI models through EM algorithm for random effects of genotype and fixed environment (EM-AMMIM) were superior followed by Bayesian AMMI models with homogeneity of variances (AMMIB-I) and FA2. At 30% of dataloss, the AMMIB-I was superior, followed by EM-AMMIB-D models, AMMI models through EM algorithm for fixed effects of environment and genotype (EM-AMMIF) and FA2. At 50% dataloss, the AMMIB-I and AMMIB-D models were superior, followed by the FA2model. It can be concluded that the AMMI models are frequentist or Bayesian and Factorial Analytical were robust in the study of MET data with high levels of loss of genotypes in the environments. | - |
| Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
| Descrição: dc.description | O presente trabalho teve por objetivo verificar a robustez na capacidade preditiva dos modelos AMMI utilizando diversas abordagens bayesianas e frequentistas, e Fatorial Analítico (FA) no estudo de dados multi-ambientais (MET) desbalanceados, usando dados simulados. Para verifcar a_ciência destes métodos foram feitos desbalanceamentos aleatórios nos dados, com níveis de 10%, 33% e 50% de perda. Para avaliar a capacidade preditiva de dados faltantes nos modelos propostos, foram utilizadas a estatística PRESS (prediction error sum square) e a correlação entre o valor predito e observado usando a validação cruzada. Os resultados mostraram que em termos preditivos, ao nível de 10% de desbalanceamento, os modelos AMMI Bayesiano com heterogeneidade de variâncias (AMMIB-D) e modelos AMMI via algoritmo EM para efeitos aleatórios de genótipo e fixo de ambiente (EM-AMMIM) foram superiores seguidos dos modelos AMMI Bayesiano com homogeneidade de variâncias (AMMIB-I) e FA2. A 30% de perda dos dados, o modelo AMMIB-I foi superior, seguidos dos modelos EM-AMMIM, AMMIB-D, modelos AMMI via algoritmo EM para efeitos fixos de ambiente e genótipo (EM-AMMIF) e FA2. A 50% de perda dos dados, os modelos AMMIB-I e AMMIB-D foram superiores, seguido do modelo FA2. Com isso pode-se concluir que os modelos AMMI seja frequentista ou bayesiano e Fatorial Analítico foram robustos no estudo de dados MET com altos níveis de perda de genótipos nos ambientes. | - |
| Formato: dc.format | application/pdf | - |
| Idioma: dc.language | pt_BR | - |
| Publicador: dc.publisher | Universidade Federal de Lavras | - |
| Publicador: dc.publisher | Programa de Pós-Graduação em Estatística e Experimentação Agropecuária | - |
| Publicador: dc.publisher | UFLA | - |
| Publicador: dc.publisher | brasil | - |
| Publicador: dc.publisher | Departamento de Ciências Exatas | - |
| Direitos: dc.rights | acesso aberto | - |
| Palavras-chave: dc.subject | Teoria bayesiana de decisão estatística | - |
| Palavras-chave: dc.subject | Distribuição (Probabilidades) | - |
| Palavras-chave: dc.subject | Modelo fatorial analítico | - |
| Palavras-chave: dc.subject | Dados faltantes | - |
| Palavras-chave: dc.subject | Validação cruzada | - |
| Palavras-chave: dc.subject | Bayesian statistical decision theory | - |
| Palavras-chave: dc.subject | Distribution (Probability theory) | - |
| Palavras-chave: dc.subject | Factor-analytic model | - |
| Palavras-chave: dc.subject | Missing data | - |
| Palavras-chave: dc.subject | Cross validation | - |
| Palavras-chave: dc.subject | Estatística | - |
| Título: dc.title | Robustez na capacidade preditiva dos modelos AMMI e Fatoriais Analíticos no estudo de dados multi-ambientais desbalanceados | - |
| Tipo de arquivo: dc.type | dissertação | - |
| Aparece nas coleções: | Repositório Institucional da Universidade Federal de Lavras (RIUFLA) | |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: